#### OFFICE OF THE SECRETARY OF DEFENSE

OPERATIONAL TEST AND EVALUATION 1700 DEFENSE PENTAGON WASHINGTON, DC 20301-1700



ABERDEEN PROVING GROUND, MARYLAND 21005-5071

## DEPARTMENT OF THE ARMY US ARMY MATERIEL COMMAND

US ARMY MATERIEL COMMAND ABERDEEN PROVING GROUND, MD 21005-5071

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS AIR ARMAMENT CENTER (AFMC)

EGLIN AFB, FL 32542-6808

## DEPARTMENT OF THE NAVY ASSESSMENT DIVISION OPNAV (N81)

WASHINGTON, DC 20350-2000

# JOINT TECHNICAL COORDINATING GROUP FOR MUNITIONS EFFECTIVENESS

RDAM-J 5 Aug 10

MEMORANDUM FOR Joint Technical Coordinating Group for Munitions Effectiness Product Management Office (OC-ALC/ENLB/Ms. Sandra Hysell), 7851 Arnold Street, Suite 202, Tinker AFB, OK 73145-9160

SUBJECT: Distribution Statement for 61 JTCG/ME-71-7-1, 61 JTCG/ME-7-2-1 and 61 JTCG/ME-71-7-2-2

- 1. A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army Research Laboratory. This review resulted in the decision to release these publications into the public domain. As such, request the following distribution statement be added to these items: "Approved for public release; distribution is unlimited."
- 2. Request, therefore, recipients of these publications be notified of this distribution statement.
- 3. The JTCG/ME Program Office point of contact for this request is Mrs. Chantal B. Marus, COMM (410) 278-6740, DSN 298-6740; e-mail: chantal.b.marus@us.army.mil.

BRYAN W. PARIS Director

JTCG/ME Program Office

| maintaining the data needed, and of including suggestions for reducing | election of information is estimated to<br>completing and reviewing the collect<br>this burden, to Washington Headquuld be aware that notwithstanding and<br>OMB control number. | tion of information. Send comments<br>parters Services, Directorate for Info | regarding this burden estimate<br>rmation Operations and Report     | or any other aspect of t<br>ts, 1215 Jefferson Davis | his collection of information,<br>Highway, Suite 1204, Arlington |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|
| 1. REPORT DATE 2. REPORT TYPE  JUL 1970 Final                          |                                                                                                                                                                                  |                                                                              | 3. DATES COVERED                                                    |                                                      |                                                                  |
| JUL 1970                                                               |                                                                                                                                                                                  | rinai                                                                        |                                                                     | 00-00-1909                                           | to 00-00-1970                                                    |
| 4. TITLE AND SUBTITLE                                                  |                                                                                                                                                                                  |                                                                              |                                                                     | 5a. CONTRACT                                         | NUMBER                                                           |
| MAGIC Computer                                                         |                                                                                                                                                                                  | 5b. GRANT NUMBER                                                             |                                                                     |                                                      |                                                                  |
|                                                                        |                                                                                                                                                                                  |                                                                              |                                                                     | 5c. PROGRAM E                                        | LEMENT NUMBER                                                    |
| 6. AUTHOR(S)                                                           |                                                                                                                                                                                  |                                                                              |                                                                     | 5d. PROJECT NU                                       | JMBER                                                            |
|                                                                        |                                                                                                                                                                                  |                                                                              | 5e. TASK NUMBER                                                     |                                                      |                                                                  |
|                                                                        |                                                                                                                                                                                  |                                                                              |                                                                     | 5f. WORK UNIT                                        | NUMBER                                                           |
|                                                                        | ZATION NAME(S) AND AI<br>enter,China Lake,C                                                                                                                                      | * *                                                                          |                                                                     | 8. PERFORMING<br>NUMBER<br><b>TN4565-3-7</b>         | GORGANIZATION REPORT $oldsymbol{1}$                              |
| 9. SPONSORING/MONITO                                                   | RING AGENCY NAME(S) A                                                                                                                                                            | AND ADDRESS(ES)                                                              |                                                                     | 10. SPONSOR/M                                        | ONITOR'S ACRONYM(S)                                              |
|                                                                        | ordinating Group for VING GROUND, M                                                                                                                                              |                                                                              | iveness,  11. SPONSOR/MONITOR'S REPORT NUMBER(S)  61 JTCG/ME-71-7-1 |                                                      |                                                                  |
| 12. DISTRIBUTION/AVAIL Approved for publ                               | LABILITY STATEMENT<br>ic release; distribut                                                                                                                                      | ion unlimited                                                                |                                                                     |                                                      |                                                                  |
| 13. SUPPLEMENTARY NO                                                   | OTES                                                                                                                                                                             |                                                                              |                                                                     |                                                      |                                                                  |
| required for vulner represent a comple                                 | outer simulation gen<br>rability studies. A co<br>ex target structure. A<br>ee target structure to                                                                               | ombinatorial geome<br>A large number of p                                    | try technique is u<br>parallel rays, rand                           | used in the sindomly located                         | mulation to<br>d in grid cells, are                              |
| 15. SUBJECT TERMS                                                      |                                                                                                                                                                                  |                                                                              |                                                                     |                                                      |                                                                  |
| 16. SECURITY CLASSIFICATION OF:                                        |                                                                                                                                                                                  |                                                                              | 17. LIMITATION                                                      | 18. NUMBER                                           | 19a. NAME OF                                                     |
| a. REPORT<br>unclassified                                              | b. ABSTRACT<br>unclassified                                                                                                                                                      | c. THIS PAGE<br>unclassified                                                 | Same as Report (SAR)                                                | OF PAGES<br>126                                      | RESPONSIBLE PERSON                                               |

**Report Documentation Page** 

Form Approved OMB No. 0704-0188

# JTCG/ME

# MAGIC COMPUTER SIMULATION

**VOLUME I. USER MANUAL** 

Produced for:

Joint Technical

Coordinating Group

for

Munitions Effectiveness



**JULY 1970** 

Approved for public release; distribution is unlimited.

#### ABSTRACT

The MAGIC computer simulation generates target description data consisting of item-by-item listings of the target's components and air-spaces encountered by a large number of parallel rays emanating from any desired attack angle. A combinatorial geometry technique, which defines the locations and shapes of the various physical regions in terms of the intersections and unions of the volumes contained in a set of simple bodies, is used to represent complex target structures. A grid cell pattern is superimposed over the surface of the target and parallel rays are randomly located in each grid cell.

This User Manual contains:

- (1) A detailed description of the input variables required to execute the program
- (2) A description of the output
- (3) A sample problem.

## ACKNOWLEDGEMENT

To assist in the evaluation of the vulnerability of armored vehicles, Mathematical Applications Group, Inc. of White Plains, New York developed the MAGIC Computer Simulation under Contract DAADO5-67-C-0041 for the Department of the Army, Ballistic Research Laboratories, Richard C. Hoyt, Technical Supervisor. Previously published documents—A Geometric Description Technique Suitable for Computer Analysis of Both Nuclear and Conventional Vulnerability of Armored Military Vehicles, AD 847576, August 1967, and The MAGIC-SAM C Target Analysis Technique, Volume VI, AMSAA TR 14, April 1969—are updated by the User and Analyst Manuals written by Armament Systems, Inc., Anaheim, California.

These new manuals reflect the current state of the art and provide for future documentation maintenance on a page-by-page basis.

Mr. L. W. Bain, Army Material Systems Analysis Agency, and Mr. M. J. Reisinger, Ballistic Research Laboratories provided technical coordination during the preparation of the new documents.

The work was performed under Naval Weapons Center, China Lake, California, Contract N00123-70-C-0576, administered by Mr. H.W. Drake, Propulsion Development Department. The documentation conforms to the format specified by NWC Technical Note 4565-3-69, Volumes I and II.

The Armament Systems, Inc. personnel responsible for preparation were John E. Musch and Robert A. Burris.

Publication is carried out under the auspices of the Air Target Vulnerability Sub-Group of the Joint Technical Coordinating Group for Munitions Effectiveness (JTCG/ME). The Sub-Group membership includes:

Frank W. Sieve - Chairman, Naval Ordnance Systems Command

Donald W. Mowrer - Army Member, U. S. Army Ballistic Research Lab.

Orlando T. Johnson - Army Member, U. S. Army Ballistic Research Lab.

1/Lt. Abraham A. Santiago, Jr. - Air Force Member, Eglin AFB

Gerald B. Bennett, Jr. - Air Force Member, Wright Patterson AFB

Hubert W. Drake - Navy Member, Naval Weapons Center

W. Wallace Morton, Jr. - Navy Member, Naval Weapons Laboratory

Robert E. Gray - Chairman, Methodology Working Group, Naval Weapons Laboratory



#### SUMMARY

The MAGIC computer simulation generates target description data with the detail and completeness required for vulnerability studies. A combinatorial geometry technique is used in the simulation to represent a complex target structure. A large number of parallel rays, randomly located in grid cells, are traced through the target structure to produce item-by-item listings of the components and air spaces.

## COMBINATORIAL GEOMETRY TECHNIQUE

The basic technique for a geometry description consists of defining the locations and shapes of the target physical regions (wall, equipment, etc.) utilizing the intersections and unions of the volumes of twelve simple body shapes. A special operator notation uses the symbols (+), (-), and (OR) to describe the intersections and unions. These symbols are used by the program to construct tables used in the ray-tracing portion of the program.

#### GEOMETRICAL DESCRIPTION

The user specifies the type and location of each body used to describe the target; and identifies physical regions in terms of these bodies. Each region is assigned an identification code for use with vulnerability analyses. A three-dimensional coordinate system is established in relation to the target, which is enclosed by a rectangular parallelepiped. A grid plane is established according to the attack angle desired, and parallel rays, starting randomly from each grid cell, are traced through the target.

#### INPUT

In the normal operating mode, target description data is input by cards. A portion of the routine converts the data to the form required for ray-tracing. The input data is checked; if errors are detected, messages are printed out. Error-free target description data may then be stored on magnetic tape and input in this form on subsequent production mode operations.

#### OUTPUT

The basic output is the results of the ray-tracing computations. A listing is obtained, for each grid cell, of the line-of-sight thickness for each geometrical region traversed, the obliquity of the ray with respect to the normal of the first surface of each region encountered, and the normal distance through each region.

#### OPTIONAL ROUTINES

Three optional routines are available to the user: special ray tracing used for target data checking; region volume calculations; and computing target presented area.

#### PROGRAMMING

The simulation, which is programmed using FORTRAN, requires a large-scale digital computer. The simulation is currently operational on both the CDC-6600 and BRL-BRLESC computers.

## TABLE OF CONTENTS

| Section  | I                                 | age         |
|----------|-----------------------------------|-------------|
| I        | INTRODUCTION                      | 1           |
|          | COMBINATORIAL GEOMETRY TECHNIQUE  | 1           |
|          | GEOMETRICAL DESCRIPTION           | 5           |
|          | Coordinate System                 | .5          |
|          | Rectangular Parallelepipeds (RPP) | 5           |
|          | Identification Codes              | 5           |
|          | Grid                              | 5<br>5<br>5 |
|          | Cellular Output                   | 9           |
|          | Data Input Error                  | 9           |
|          | OPTIONAL ROUTINES                 | 14          |
|          | Subroutine TESTG                  | 14          |
|          | Subroutine VOLUM                  | 14          |
|          | Subroutine AREA                   | 14          |
| II       | INPUT                             | 15          |
|          | DESCRIPTION OF INPUT              | 19          |
|          | DATA DECK SETUP                   | 85          |
| III      | OUTPUT                            | 91          |
| IV       | SAMPLE PROBLEM                    | 103         |
|          |                                   | 103         |
|          | SAMPLE PROBLEM INPUT              | 103         |
| APPENDIX |                                   | 119         |

## LIST OF FIGURES

| Figure | Pa                                                      | age          |
|--------|---------------------------------------------------------|--------------|
|        | Part I                                                  |              |
| 1      | Mallet with Handle and Head as Separate Regions         | 2            |
| 2      | Mallet with Handle Extending Into the Head              | 3            |
| 3 .    | Mallet with Handle Consisting of Two Types of Materials | 3            |
| 4      | Mallet with Head and Handle of Like Materials           | 4            |
| 5      | Buttressing Surfaces                                    | 4            |
| 6      | Coordinate System Superimposed on Simplified Tank       | 6            |
| 7      | Twelve RPP's                                            | 7            |
| 8      | Attack Angle Geometry                                   | 10           |
| 9      | Representative Vehicle Section for Target Cell          | 327          |
|        | Description Data                                        | 11           |
| 10     | Simplified Tank                                         | 16           |
| 11     | Rectangular Parallelepiped Geometry                     | 25           |
| 12     | Box Input                                               | 28           |
| 13     | Sphere Input                                            | 30           |
| 14     | Right Circular Cylinder Input                           | 33           |
| 15     | Right Elliptical Cylinder Input                         | 36           |
| 16     | Truncated Right Angle Cone Input                        | 39           |
| 17     | Ellipsoid of Revolution Input                           | 42           |
| 18     | Right Angle Wedge Input                                 | 45           |
| 19     | Six-Faced Arbitrary Convex Polyhedron Input             | 49           |
| 20     | Five-Faced Arbitrary Convex Polyhedron Input            | 50           |
| 21     | Four-Faced Arbitrary Convex Polyhedron Input            | 51           |
| 22     | Truncated Elliptic Cone Input                           | 55           |
| 23     | Arbitrary Curved Surface Input                          | 59           |
| 24     | Torus Input                                             | 62           |
| 25     | Special Volume Computation                              | 74           |
| 26     | Grid Plane Input                                        | 81           |
| 27     | Normal Mode Deck Setup                                  | 86           |
| 28     | Production Mode Deck Configuration                      | 87           |
| 29     | Special Ray Tracing Deck Setup                          | 88           |
| 30     | Volume Computation Deck Setup                           | 89           |
| 31     | Area Computation Deck Setup                             | 90           |
| 32     | Sample Problem Body Data                                | 92           |
| 33     | Sample Problem Region Table                             | 96           |
| 34     | Sample Problem Region Identification                    | 97           |
| 35     | First Page Cell Data Output, Case 1, Sample Problem     | 98           |
| 36     |                                                         | 102          |
| 37     |                                                         | 104          |
| 38     |                                                         | 105          |
| 39     |                                                         | 106          |
| 40     |                                                         | 117          |
|        |                                                         | According 15 |

### SECTION I

#### INTRODUCTION

The MAGIC computer simulation generates target description data with the detail and completeness required for vulnerability studies. The target description data consists of item-by-item listings of the components and air spaces encountered by a large number of parallel rays emanating from any attack angle and passing through any type of target.

A combinatorial geometry technique is used to represent a complex three-dimensional target structure, such as a tank, in terms of sums, differences, and intersections of relatively simple bodies. The input for such a description consists of the geometric location and dimensions of the simple bodies followed by a region definition table consisting of a series of equations defining each region in terms of the simple bodies. In addition to the geometric description, a coded number is assigned to each region to identify its function.

The computer routine superimposes a grid cell pattern over the surface of the target, as viewed from the attack angle desired, randomly locating parallel rays in each grid cell. The computer traces each ray through the target; and each target item encountered is listed sequentially and identified as to ray location in the grid, target identification, line-of-sight thickness, normal thickness, angle of obliquity, identification of the air space following the target, and line-of-sight distance through the air space.

#### COMBINATORIAL GEOMETRY TECHNIQUE

The combinatorial geometry technique has been developed to produce a model that is both accurate and suitable for a ray-tracing analysis program. The basic technique for a geometry description requires defining the locations and shapes of the various physical regions (wall, equipment, etc.), utilizing the intersections and unions of the volumes of twelve simple bodies. The geometric bodies are as follows:

- (1) Rectangular parallelepipied
- (2) Box
- (3) Sphere
- (4) Right circular cylinder
- (5) Right elliptical cylinder

- (6) Truncated right angle cone
- (7) Ellipsoid
- (8) Right angle wedge
- (9) Arbitrary convex polyhedron of four, five, or six sides
- (10) Truncated elliptic cone
- (11) Arbitrary surface
- (12) Torus

A special operator notation uses the symbols (+), (-), and (OR) to describe the intersections and unions. These symbols are used by the program to construct tables used in the ray-tracing portion of the problem. If a body appears in a region description with a (+) operator, the region being described is wholly contained in the body. If a body appears in a region description with a (-) operator, the region being described is wholly outside the body. A region may be described in terms of several subregions lumped together by (OR) statements.

The technique of describing a physical region is best illustrated by examples. Imagine a mallet consisting of two cylinders. Call the mallet head solid number 1 and the handle solid number 2.

The two cylinders may be physically positioned and logically described in several ways. One way is to consider the handle and head as separate regions, as shown in Figure 1. The region description is region 1 = 1 and region 2 = 2-1.



FIG. 1. Mallet with Handle and Head as Separate Regions

Another way is to think of the handle extending into the head, as shown in Figure 2. A logical method of describing this mallet is region l=1-2 and region 2=2, indicating that the mallet head contains a cylindrical hole into which the handle is fitted.



FIG. 2. Mallet with Handle Extending Into the Head

Now consider a description of a mallet physically similar to that in Figure 2 but whose handle consists of two types of material, one outside the mallet head and the other inside the head, as shown in Figure 3. A logical way to describe this is region 1 = 1-2, region 2 = 2-1, and region 3 = 1+2.



FIG. 3. Mallet with Handle Consisting of Two Types of Materials

A fourth way is to lump the mallet head and handle into one region, considering them to be like materials, as shown in Figure 4. The description then is region  $1 = (OR) \ 1 \ (OR) \ 2$ . This means that a point in region 1 may be in either solid 1 or solid 2.



FIG. 4. Mallet with Head and Handle of Like Materials

A rule of construction imposes the additional restriction that region descriptions include negation (-) of buttressing surfaces not otherwise necessary to the logical description of the region. That is, if points on the surface of body 2 are common to parts of the surface of body 3, as shown in Figure 5, the description of region 200 is 200 = (+2) (-3). Region 300 is defined as 300 = (+3) (-2).



FIG. 5. Buttressing Surfaces

## GEOMETRICAL DESCRIPTION

The user of the program must specify the geometrical description by establishing two tables. The first table describes the type and location of the set of bodies to be used. The second table identifies the physical region in terms of these bodies. The computer program converts these tables into the form required for ray tracing. Note well: all the space must be divided into regions, and no point may be in more than one region.

## Coordinate System

The geometric figures used to define the target are located relative to one another by the use of a three-dimensional coordinate system superimposed on available engineering drawings. A readily identifiable reference point should be designated from which the three-dimensional coordinate system can easily be constructed. On armored vehicles such as tanks, the intersection of the turret datum line and the center lines of the turret forms a natural reference point for the coordinate system origin as illustrated by the simplified tank in Figure 6.

## Rectangular Parallelepipeds (RPP)

Once the coordinate system is established, the target is inclosed in an environment consisting of rectangular parallelepipeds (RPP's). The RPP's are solid geometric figures used for gross subdivisions of the target environment, which consists of the air surrounding and the ground under the target.

Twelve RPP's are used for the nuclear analysis of targets, as shown in Figure 7, but only one RPP is required for conventional target analyses. Twelve RPP's should be considered for all target descriptions so as to standardize the target descriptions for use with either conventional or nuclear analyses.

## Identification Codes

Each region is assigned an identification code for use with conventional vulnerability and MAGIC programs. A three-digit code is assigned to each component of the target, such as armor, gun tube; and a two-digit code is assigned to each space, such as inside air, outside air. A general division of identification codes might be as shown in Table 1. A component described using more than one region will have its ID assigned to each region.

#### Grid

All the rays that are traced through the target geometry originate in the grid plane, which is a plane divided into equal squares called grid cells and oriented so that a ray passed perpendicularly from the center of the plane





FIG. 6. Coordinate System Superimposed on Simplified Tank



FIG. 7. Twelve RPP's

TABLE 1. Identification Codes

| Component Codes |                                   |  |  |  |
|-----------------|-----------------------------------|--|--|--|
| ID Codes        | Type of Component                 |  |  |  |
| 001-099         | Internal components               |  |  |  |
| 100-199         | Types of armor                    |  |  |  |
| 200-299         | Fuel components                   |  |  |  |
| 300-399         | Miscellaneous exterior components |  |  |  |
| 400-499         | Gun components                    |  |  |  |
| 500-599         | Track suspension components*      |  |  |  |
| 600-699         | Wheel suspension components       |  |  |  |
| 700-799         | Power train components            |  |  |  |
| 800-899         | Miscellaneous components          |  |  |  |
| 900-998         | Not used at present               |  |  |  |
| 999             | The ground                        |  |  |  |

\*ID Code 501 is reserved for the track; the computer assigns 502 if the track edge is hit.

| Space Codes  |                        |  |  |  |
|--------------|------------------------|--|--|--|
| Space Number | Type of Space          |  |  |  |
| 00           | Not used at present    |  |  |  |
| 01           | External air           |  |  |  |
| 02           | Crew compartment air   |  |  |  |
| 03           | Not used at present    |  |  |  |
| 04           | Not used at present    |  |  |  |
| 05           | Engine compartment air |  |  |  |
| 06           | Not used at present    |  |  |  |
| 07           | Not used at present    |  |  |  |
| 08           | Not used at present    |  |  |  |
| 09           | No further target      |  |  |  |

NOTE: The operation of the MAGIC program will not allow assigning different space codes to bounding regions. In other words, a ray passing through the geometry cannot pass directly from outside air (01) to inside air (02). There must be a three-digit coded item between different space regions.

to the target will intersect the target coordinate system origin. The grid plane is established with the following information: grid size, attack angle of the target, and back-off distance from the origin of the coordinate system.

The attack angle is specified in terms of an azimuth and elevation angle using a right-handed coordinate system. A positive azimuth angle is measured from the positive X axis in a counterclockwise direction when viewed from above, as shown in Figure 8. Elevation angles are measured from the X-Y plane positive upward.

The back-off distance is the distance from the origin of the coordinate system used in the target description to the grid plane. All the rays originating from a common grid plane must start in the same region; therefore, the grid plane must be placed within the bounds of one region. If the grid plane is to include the entire target, it must lie outside the target as described in the region description. If only a certain component of the target is to be considered (for instance, the engine of a tank), care must be taken to insure that the grid plane lies outside the engine as described, that it lies within the bounds of only one region, and that all rays end in a common region.

## Cellular Output

The basic output of the MAGIC simulation consists of cellular output obtained from the ray tracing computations. The ray tracing phase is the process whereby rays (one for each cell) are traced perpendicularly from the grid plane through the target geometry. The calculated output for each ray consists of the line-of-sight thickness of each geometric region traversed, the obliquity (angle of incidence) of the ray with respect to the first surface of each region encountered (excluding air or spaces), and the normal or perpendicular distance through each region from the point of entry (excluding air or spaces). One unique feature of the program is that thicknesses of bounding geometric regions with like functional identifiers are cumulative. A representative vehicle section for target cell description data is shown in Figure 9.

## Data Input Error

The simulation contains statements to check the validity of the target geometry data. Some of the errors are considered fatal and will cause execution to terminate, while others will be noted and special error messages printed. A tally is maintained of the non-fatal errors; if they exceed a specified number, execution terminates. Table 2 lists the error items and the subroutine in the simulation where the error check statement is located.



FIG. 8, Attack Angle Geometry



FIG. 9. Representative Vehicle Section for Target Cell Description Data

TABLE 2. Data Input Errors

| Subroutine | Description                                                                                                                     | Error Type |
|------------|---------------------------------------------------------------------------------------------------------------------------------|------------|
| GENI       | Body card does not contain correct body abbreviation                                                                            | Fatal      |
|            | Minor radius of torus equal to or greater than major radius                                                                     | Non-fatal  |
|            | Semi-major and semi-minor axes of<br>truncated elliptical cone are not<br>perpendicular or height vector is<br>parallel to base | Non-fatal  |
|            | Radii of upper and lower bases same for truncated elliptical cone                                                               | Non-fatal  |
|            | Vectors used to describe a box,<br>right angle wedge, or truncated<br>elliptical cone are not mutually<br>perpendicular         | Non-fatal  |
|            | Storage locations for body data exceed allowable value                                                                          | Fatal      |
|            | Logical operator was not located                                                                                                | Fatal      |
|            | Storage locations for region data exceed allowable value                                                                        | Fatal      |
|            | Number of regions in region table input does not match the number of regions specified                                          | Fatal      |
|            | Number of body description cards<br>does not match the number speci-<br>fied                                                    | Fatal      |
|            | Region description error                                                                                                        | Fatal      |
|            | Storage for enter/leave table exceeded                                                                                          | Fatal      |
| RPPIN      | RPP description errors                                                                                                          | Fatal      |

TABLE 2. (Concluded)

| Subroutine | Description                                                | Error Typ |
|------------|------------------------------------------------------------|-----------|
| ALBERT     | Undefined plane in arbitrary convex polyhedron (ARB) input | Non-fatal |
|            | Four points describing a face of of ARB are not in a plane | Non-fatal |
|            | Error in numering points of ARB                            | Non-fatal |
| VOLUM      | Next region number negative                                | Fatal     |
| MAIN       | No storage available for region identification data        | Fatal     |
| CALC       | Error in body type number                                  | Fatal     |
|            | No normal found for arbitrary surface                      | Non-fatal |
| G1         | Error in body type number                                  | Non-fatal |
|            | No intersect found in region                               | Non-fatal |
|            | Error in body number of inter-<br>sected RPP               | Non-fatal |
|            | Error in surface number of inter-<br>sected RPP            | Non-fatal |
|            | No entries in region enter table                           | Non-fatal |
|            | No region found for present point                          | Non-fatal |
|            | Distance to next region is less than zero                  | Non-fatal |
| WOWI       | Error in body type number                                  | Non-fatal |
| ARS        | Data in hit table is in error                              | Non-fatal |
| RPP        | More than two surfaces of RPP were intersected             | Non-fatal |
| AREA       | Storage for area data exceeded                             | Fatal     |

#### OPTIONAL ROUTINES

Three optional subroutines--TESTG, VOLUM, and AREA--are available to the user for performing special computations.

## Subroutine TESTG

This routine may be used to trace a specified number of rays in any portion of the target. These special computations are useful in checking the input data target geometry and region specifications.

#### Subroutine VOLUM

This routine may be used to compute the volume of each region contained within a specified portion of the target. An imaginary box is specified, and the volume of each region in the box is computed.

## Subroutine AREA

This routine may be used to compute the presented area of the target as viewed from the specified attack angle. The presented area data is categorized according to the component identification number of the first component struck by the rays and to the total target.

#### SECTION II

#### INPUT

Three types of target description data are required by the MAGIC computer program. One type is the geometric figures that are used to approximate the solid bodies comprising the target. If these figures were put into a perspective drawing, they would look like a haphazard, generally unrecognizable collection of lines and surfaces. The second type of target description data combines the geometric figures into regions forming the actual components of the target. If each region were identified by a unique color or shading, the shapes that appear would closely resemble the components of the target being described. The third type of target description data assigns identification code numbers to the defined regions of the target.

These three types of description data are illustrated in Figure 10 and Tables 3, 4, and 5. Figure 10 shows the target as a simplified tank described by eleven geometric figures and eleven regions. Table 3 lists the 11 geometric figures used to represent the solid bodies.

TABLE 3. Bodies Used to Represent Tank

| Body Number | Body Type                   |  |  |
|-------------|-----------------------------|--|--|
| 13          | Вох                         |  |  |
| 14          | Box                         |  |  |
| 15          | Sphere                      |  |  |
| 16          | Sphere                      |  |  |
| 17          | Right circular cylinder     |  |  |
| 18          | Вох                         |  |  |
| 19          | Box                         |  |  |
| 20          | Arbitrary convex polyhedron |  |  |
| 21          | Ellipsoid of revolution     |  |  |
| 22          | Ellipsoid of revolution     |  |  |
| 23          | Вох                         |  |  |







FIG. 10. Simplified Tank

Table 4 shows the manner in which the geometric figures are combined into regions forming the actual components.

TABLE 4. Region Table for Tank

| Region<br>Number | Body Numbers With Combinatorial<br>Operators Used to Create Region |
|------------------|--------------------------------------------------------------------|
| 13               | 13 -14 -15 -18 -19                                                 |
| 14               | 13 +14 -18 -21 -22 -23                                             |
| 15               | 15 -17 -14 -16                                                     |
| 16               | 15 +16 -14 -17 -21 -22                                             |
| 17               | 17                                                                 |
| 18               | 13 +14 +18 -19                                                     |
| 19               | 13 +14 +18 +19 -20                                                 |
| 20               | 13 +14 +18 +19 +20                                                 |
| 21               | 21                                                                 |
| 22               | 22                                                                 |
| 23               | 13 +14 +23                                                         |

An explanation of region 15, the turret armor, shown in Figure 10, illustrates the logic of the region descriptions shown in Table 4. Region 15 is described in Table 4 as

Region 
$$15 = 15 - 17 - 14 - 16$$

Since the space being described lies within body 15 but does not include the space in body 16, the description contains a+15 (the + sign being implied in this case) and a-16. The turret armor shell now must be cut off where it extends into the hull. A -14 cuts this shell

off at the inside edge of the hull armor. Since the gum tube extends through the turret armor and has a different material and function, it requires a different code in a vulnerability analysis and should be "negated" from the turret armor region; thus we obtain the -17.

Table 5 lists the identification codes for the tank.

TABLE 5. Tank Identification Codes

| Region<br>Number | Item<br>Code | Space<br>Code | Description of Region |
|------------------|--------------|---------------|-----------------------|
| 13               | 101          |               | Steel armor hull      |
| 14               |              | 02            | Inside air (crew)     |
| 15               | 102          |               | Steel armor turret    |
| 16               |              | 02            | Inside air (crew)     |
| 17               | 401          |               | Gun barrel            |
| 18               | 334          |               | Bulkhead              |
| 19               |              | 05            | Inside air (engine)   |
| 20               | 701          |               | Engine                |
| 21               | 041          |               | Driver                |
| 22               | 001          |               | Commander             |
| 23               | 007          |               | Ammunition            |

A complex target requires a large amount of descriptive data. A portion of the MAGIC program is devoted to reading data cards and to checking and storing the data. A user option is to store the target description data on magnetic tape so that on subsequent program executions the target data processing portion of the MAGIC program will not be required.

## DESCRIPTION OF INPUT

This section contains descriptions of the input variables required to execute the MAGIC program. The descriptions include the variable names, definitions, and data card formats. Following is a list of the data cards:

| Card | Title                                               |
|------|-----------------------------------------------------|
| 1    | Program Option Card                                 |
| 2    | Title Card for Target                               |
| 3    | Target Input Constants                              |
| 4    | Rectangular Parallelepiped (RPP)                    |
| 5    | Body Description, Box (BOX)                         |
| 6    | Body Description, Sphere (SPH)                      |
| 7    | Body Description, Right Circular Cylinder (RCC)     |
| 8    | Body Description, Right Elliptical Cylinder (REC)   |
| 9    | Body Description, Truncated Right Angle Cone (TRC)  |
| 10   | Body Description, Ellipsoid of Revolution (ELL)     |
| 11   | Body Description, Right Angle Wedge (RAW)           |
| 12   | Body Description, Arbitrary Convex Polyhedron (ARB) |
| 13   | Body Description, Truncated Elliptic Cone (TEC)     |
| 14   | Body Description, Arbitrary Curved Surface (ARS)    |
| 15   | Body Description, Torus (TOR)                       |
| 16   | Region Table Input                                  |
| 17   | Special Ray Tracing Input (Optional)                |
| 18   | Special Volume Input (Optional)                     |
| 19   | Region Identification Data                          |
| 20   | Specification Card                                  |
| 21   | Grid Cell Description                               |
| 22   | Subroutine AREA Input (Optional)                    |

\*Body description cards are used as required to describe the target. The type and arrangement will vary accordingly.

| Pro         | gram Optio | n Card              |                         |                                 |                                                                                                                         | CARD: 1                                                                                                      |
|-------------|------------|---------------------|-------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|             | 1234       | A B                 | 6 17 18 9 20 21 22 23 2 | C<br>425 76 27 28 29 30(3) 32 : | D E                                                                                                                     | F<br>46 47 4849 50 51 52 53 54 55 54 57 58 59 64 61 67 63 64 65 66 67 68 69 70 71 73 73 74 75 76 77 78 79 80 |
| ID          | PARA       | UNITS               | FORMAT                  | COLUMNS                         |                                                                                                                         | DESCRIPTION                                                                                                  |
| A           | IRDTP4     | ND*                 | 110                     | 1-10                            | IRDTP4 ≠ 0                                                                                                              | Processed target geometry data is to be entered from magnetic tape.                                          |
|             |            |                     |                         |                                 | IRDTP4 = 0                                                                                                              | Target geometry data is to be entered from cards.                                                            |
| В           | IWRTP4     | ND                  | 110                     | 11-20                           | IWRTP4 ≠ 0                                                                                                              | Processed target geometry is to be stored on magnetic tape.                                                  |
|             |            |                     |                         |                                 | IWRTP4 = 0                                                                                                              | Processed target geometry will not be stored on magnetic tape.                                               |
| C ITESTG ND | ND         | 110                 | 21-30                   | ITESTG ≠ 0                      | Execute special ray tracing for a specified number of rays (see Card 17). This option is used for target data checkout. |                                                                                                              |
|             |            |                     |                         |                                 | ITESTG = 0                                                                                                              | Do not trace special rays.                                                                                   |
| D           | IRAYSK     | ND                  | 110                     | 31-40                           | IRAYSK ≠ 0                                                                                                              | Perform computations for a random number of grid cells.                                                      |
| - 1         |            |                     |                         |                                 | IRAYSK = 0                                                                                                              | Perform computations for all grid cells.                                                                     |
| E ICARDI    | ICARDI     | ND                  | 110                     | 41-50                           | Not Used                                                                                                                | Leave blank.                                                                                                 |
|             |            | *Non-<br>dimensions | 1                       |                                 |                                                                                                                         |                                                                                                              |

TN4565-3-71 Vol I

| ID | PARA   | UNITS | FORMAT | COLUMNS | D E F G                                                                                                                                              |         |
|----|--------|-------|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| F  | IENTLV | ND    | 110    | 51-60   | <pre>IENTLV # 0 Print out enter/leave tables generated by program.  IENTLV = 0 Omit printout of enter/leave tables.</pre>                            |         |
| G  | IVOLUM | ND    | 110    | 61-70   | IVOLUM # 0 Subroutine VOLUM will be executed to compute the volumes of each region contained within a specified portion of the target (see Card 18). |         |
|    |        |       |        |         | IVOLUM = 0 Subroutine VOLUM will not be executed.                                                                                                    |         |
|    |        |       |        |         |                                                                                                                                                      |         |
|    |        |       |        |         |                                                                                                                                                      | Г       |
|    |        |       |        |         |                                                                                                                                                      | Citte T |

| Tit | le Card fo | r Target                    |                           |                                                    |                                                                                                | CARD: 2                                                                 |
|-----|------------|-----------------------------|---------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|     | 1 2 3 4 5  | s 6 7 8 9 10 11 12 13 14 15 | 16 17 18/19 20 21/22 23 2 | <b>4</b> 25 26 27 <b>28</b> 29 3 <b>0</b>  31 32 3 | 3 34-35-38 37-38-38 40-41-42 43-44-45 46-47-48 49-50-51 52-53-54 55-58-57 58-58-68 61-62-63 64 | 65 6 <b>4</b> 67 68 6 <b>9</b> 70 71 7 <b>3</b> 73 74 75 76 77 78 79 80 |
| ID  | PARA       | UNITS                       | FORMAT                    | COLUMNS                                            | DESCRIPTION                                                                                    |                                                                         |
| A   | IT(I)      | ND                          | 10A6                      | 1-60                                               | Alphameric characters represent:<br>The total field width is 60 char                           | ing the target's title.                                                 |
|     |            |                             |                           |                                                    |                                                                                                | CARD: 2                                                                 |

| N    |
|------|
| 1    |
| U    |
| 0    |
| 565- |
| w    |
| 4.4  |
| 71   |
| 1    |
| <    |
| 01   |
| H    |

|   | A 1 2 3 4 5 | B     | 6 17 18 19 20 21 22 23 24 | C<br> 25 26 27  28 29 30  31 32 33 | D E. F G                                                                                                                             |  |
|---|-------------|-------|---------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| D | PARA        | UNITS | FORMAT                    | COLUMNS                            | DESCRIPTION                                                                                                                          |  |
| A | NRPP        | ND    | 110                       | 1-10                               | Number of rectangular parallelepipeds (RPP's) used to describe the target's environment.                                             |  |
| В | NTRIP       | ND    | 110                       | 11-20                              | Not used.                                                                                                                            |  |
| c | NSCAL       | ND    | I10                       | 21-30                              | Not used.                                                                                                                            |  |
| D | NBODY       | ND    | 110                       | 31-40                              | Number of geometric figures, other than RPP's, used to describe the target regions. There must be NBODY body cards in the data deck. |  |
| E | NRMAX       | ND    | 110                       | 41-50                              | Number of regions used to describe the target geometry.  There must be NRMAX region description cards in the data deck.              |  |
| F | IPRIN       | ND    | 110                       | 51-60                              | IPRIN # 0 Print processed target geometry that is stored in the MASTER-ASTER array.                                                  |  |
|   |             |       |                           |                                    | IPRIN = 0 Do not print processed target geometry.                                                                                    |  |
| G | IRCHEK      | ND    | 110                       | 61-70                              | IRCHEK # 0 Exercise check for duplicate region data.                                                                                 |  |
|   |             |       |                           |                                    | IRCHEK = 0 Omit check for duplicate region data.                                                                                     |  |
|   |             |       |                           |                                    |                                                                                                                                      |  |



Specify the maximum and minimum values of the X, Y, Z coordinates which bound the parallelepiped. A special requirement for the RPP is that the bounding planes must be parallel to the coordinate axes.

FIG. 11. Rectangular Parallelepiped Geometry

|  | NAT. |   |
|--|------|---|
|  | 4    | 9 |
|  | 5    | 2 |
|  | ۶    | 7 |
|  | ١    | í |
|  | (    | ٨ |
|  | -    | 1 |
|  | ŀ    | _ |
|  | *    |   |
|  | Ş    | 5 |
|  | ľ    | Ī |
|  | ŀ    |   |

|                 | 12165                                                 | A<br>Et et ciki mode e v la                       | 16 17 18/19 20 21/22 23 2                          | B<br>2425 26 2728 29 3031 32 3                     | C D E F<br>2 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 53 50 59 68 61 62 62 64 65 66 67 68 62 70 71 72 73 74 75 76 77 78 79 80                                                                                                                                                              |  |
|-----------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ID              | PARA                                                  | UNITS                                             | FORMAT                                             |                                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                            |  |
| A B C D D E F F | FX(7)<br>FX(8)<br>FX(9)<br>FX(10)<br>FX(11)<br>FX(12) | Inches* Inches Inches Inches Inches Inches Inches | F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5 | 11-20<br>21-30<br>31-40<br>41-50<br>51-60<br>61-70 | (X, Y, and Z components, respectively, of one of the mutually perpendicular vectors, $\overline{A}$ , $\overline{B}$ , and $\overline{C}$ (see Figure 12).  (X, Y, and Z components, respectively, of one of the mutually perpendicular vectors, $\overline{A}$ , $\overline{B}$ , and $\overline{C}$ (see Figure 12). |  |
|                 |                                                       |                                                   |                                                    |                                                    | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent                                                                                                                                                                                                               |  |



Specify the vertex, V, at one of the corners by giving the X, Y, Z coordinates. Specify the X, Y, Z components of the three mutually perpendicular vectors,  $\overline{A}$ ,  $\overline{B}$ , and  $\overline{C}$ , representing the height, width, and length of the box. Note that the only geometric difference between a BOX and an RPP is that a BOX may be arbitrarily oriented, but the bounding planes of an RPP must be parallel to the coordinate axes. Also, the BOX and RPP serve different functional uses. The RPP may be used only to describe the enclosing environment regions of the target but not any portion of the target itself. The BOX is used for describing portions of the target.

| Number<br>of Cards | 1-3             | 4-6 | (2)            | d Colum |                | 44             | 49.30 |       |
|--------------------|-----------------|-----|----------------|---------|----------------|----------------|-------|-------|
| or cards           |                 | 4-0 | 11-20          | 21-30   | 31-40          | 41-50          | 51-60 | 61-70 |
| 1 of 2             | Solid<br>Number | BOX | v <sub>x</sub> | Vy      | V <sub>z</sub> | Ax             | Ay    | Az    |
| 2 of 2             | Blan            | k   | Bx             | By      | Bz             | C <sub>x</sub> | Cv    | Cz    |

FIG. 12. Box Input

| IN |
|----|
| t  |
| 0  |
| ĭ  |
| ï  |
| 1  |
| VO |
| ۲  |
| Н  |

| ID               | PARA                             | UNITS                        | FORMAT                  | COLUMNS                          | DESCRIPTION                                                                                                                                                                   |
|------------------|----------------------------------|------------------------------|-------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                | IC(I)                            | ND                           | 3A1                     | 1-3                              | Alphameric characters representing the ordinal number of<br>the body. The number must be left justified with no<br>leading zeroes, i.e., the first digit must be in column 1. |
| В                | ITYPE                            | ND                           | А3                      | 4-6                              | Alphameric characters SPH denoting that the body is a sphere.                                                                                                                 |
| С                | IC(J)                            | ND                           | A4                      | 7-10                             | Not used.                                                                                                                                                                     |
| D<br>E<br>F<br>G | FX(1)<br>FX(2)<br>FX(3)<br>FX(4) | Inches* Inches Inches Inches | F10.5<br>F10.5<br>F10.5 | 11-20<br>21-30<br>31-40<br>41-50 | (X, Y, and Z coordinates, respectively, of vertex V at the center of the sphere (see Figure 13).  Radius R of the sphere (see Figure 13).                                     |
|                  |                                  |                              |                         |                                  | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                                |



Specify vertex  $\bar{\textbf{V}}$  at the center and scalar R denoting the radius.

| Number   | Number   Card Columns |     |                |                |       |       |  |  |  |  |  |
|----------|-----------------------|-----|----------------|----------------|-------|-------|--|--|--|--|--|
| of Cards | 1-3                   | 4-6 | 11-20          | 21-30          | 31-40 | 41-50 |  |  |  |  |  |
| 1 of 1   | Solid<br>Number       | SPH | v <sub>x</sub> | V <sub>y</sub> | Vz    | R     |  |  |  |  |  |

FIG. 13. Sphere Input

| ID                         | PARA                                               | UNITS                                      | FORMAT                                             | COLUMNS                                            | DESCRIPTION                                                                                                                                                                                     |
|----------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                          | IC(I)                                              | ND                                         | 3A1                                                | 1-3                                                | Alphameric characters representing the ordinal number of the body. The number must be left justified with no leading zeroes, i.e., the first digit must be in column 1                          |
| В                          | ITYPE                                              | ND                                         | A3                                                 | 4-6                                                | Alphameric characters RCC denoting that the body is a right circular cylinder.                                                                                                                  |
| С                          | IC(J)                                              | ND                                         | A4                                                 | 7-10                                               | Not used.                                                                                                                                                                                       |
| D<br>E<br>F<br>G<br>H<br>I | FX(1)<br>FX(2)<br>FX(3)<br>FX(4)<br>FX(5)<br>FX(6) | Inches* Inches Inches Inches Inches Inches | F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5 | 11-20<br>21-30<br>31-40<br>41-50<br>51-60<br>61-70 | (X, Y, and Z coordinates, respectively, of the vertex, V, at the center of one base of the cylinder (see Figure 14)  (X, Y, and Z components, respectively, of height vector H (see Figure 14). |
|                            |                                                    |                                            |                                                    |                                                    | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                                                  |

| ID | PARA  | UNITS   | FORMAT | COLUMNS | 13 34 35 36 37 30 38 40 41 42 43 44 45 46 47 40 49 50 51 52 53 54 55 50 57 50 59 60 61 62 63 64 65 60 67 60 60 70 71 72 73 74 75 76 77 70 79 80  DESCRIPTION |
|----|-------|---------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | FX(7) | Inches* | F10.5  | 11-20   | Radius R of the cylinder's base (see Figure 14).                                                                                                             |
|    |       |         |        |         | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                               |



Specify vertex  $\bar{V}$  at the center of one base, height vector  $\bar{H},$  and scalar R denoting the base radius.

|                    |                 |     |                | Card C         | olumns |       |       |       |
|--------------------|-----------------|-----|----------------|----------------|--------|-------|-------|-------|
| Number<br>of Cards | 1-3             | 4-6 | 11-20          | 21-30          | 31-40  | 41-50 | 51-60 | 61-70 |
| 1 of 2             | Solid<br>Number | RCC | v <sub>x</sub> | V <sub>y</sub> | Vz     | H     | H     | Hz    |
| 2 of 2             | Blar            | nk  | R              |                |        | Blank |       |       |

FIG. 14. Right Circular Cylinder Input

| ID          |                         | UNITS                       | FORMAT                  | COLUMNS                 | DESCRIPTION                                                                                                                                                             |       |
|-------------|-------------------------|-----------------------------|-------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| A           | IC(I)                   | ND                          | 3A1                     | 1-3                     | Alphameric characters representing the ordinal number of the body. The number must be left justified with no leading zeroes, i.e., the first digit must be in column 1. |       |
| В           | ITYPE                   | ND                          | A3                      | 4-6                     | Alphameric characters REC denoting that the body is a right elliptical cylinder.                                                                                        |       |
| C           | IC(J)                   | ND                          | A4                      | 7-10                    | Not used.                                                                                                                                                               |       |
| D<br>E<br>F | FX(1)<br>FX(2)<br>FX(3) | Inches*<br>Inches<br>Inches | F10.5<br>F10.5<br>F10.5 | 11-20<br>21-30<br>31-40 | X, Y, and Z coordinates, respectively, of center V of the base ellipse (see Figure 15).                                                                                 |       |
| G<br>H<br>I | FX(4)<br>FX(5)<br>FX(6) | Inches<br>Inches<br>Inches  | F10.5<br>F10.5<br>F10.5 | 41-50<br>51-60<br>61-70 | (X, Y, and Z components, respectively, of height vector (see Figure 15).                                                                                                | H     |
|             |                         |                             |                         |                         |                                                                                                                                                                         | Γ     |
|             |                         |                             |                         |                         |                                                                                                                                                                         | CAAD. |
|             |                         |                             |                         |                         | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                          | WO    |

| ID          | PARA                                                  | UNITS                                      | FORMAT                                             | COLUMNS                                            | C P F F P P P P P P P P P P P P P P P P                                                                                                                                                                                                              |
|-------------|-------------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A B C D E F | FX(7)<br>FX(8)<br>FX(9)<br>FX(10)<br>FX(11)<br>FX(12) | Inches* Inches Inches Inches Inches Inches | F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5 | 11-20<br>21-30<br>31-40<br>41-50<br>51-60<br>61-70 | (X, Y, and Z components, respectively, of the vector R1 defining the semi-major axis of the base ellipse (see Figure 15).  (X, Y, and Z components, respectively, of the vector R2 defining the semi-minor axis of the base ellipse (see Figure 15). |
|             |                                                       |                                            |                                                    |                                                    | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                                                                                                       |



Specify the coordinates of  $\overline{V}$ , the center of the base ellipse, height vector  $\overline{H}$ , and vectors  $\overline{R1}$  and  $\overline{R2}$  in the base plane defining the semi-major and semi-minor axes, respectively.

Card Columns

| Number<br>of Cards | 1-3             | 4-6 | 11-20           | 21-30           | 31-40           | 41-50           | 51-60           | 61-70           |
|--------------------|-----------------|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1 of 2             | Solid<br>Number | REC | v <sub>x</sub>  | Vy              | Vz              | H <sub>×</sub>  | Hy              | Hz              |
| 2 of 2             | Blar            | ık  | R1 <sub>x</sub> | R1 <sub>y</sub> | R1 <sub>z</sub> | R2 <sub>x</sub> | R2 <sub>y</sub> | R2 <sub>z</sub> |

FIG. 15. Right Elliptical Cylinder Input

| H |
|---|
| N |
| Ü |
| 0 |
| 4 |
| ù |
| 1 |
| 1 |
|   |
| < |
| 0 |
|   |
| ۲ |
|   |

|             | A B                     | C D                         | 6 17 18/19 20 21/22 23 24 | E<br>\$25 26 27 20 29 30 31 32 3 | F I I I I I I I I I I I I I I I I I I I                                                                                                                                    |    |
|-------------|-------------------------|-----------------------------|---------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ID          | PARA                    | UNITS                       | FORMAT                    | COLUMNS                          | DESCRIPTION                                                                                                                                                                |    |
| A           | IC(I)                   | ND                          | 3A1                       | 1-3                              | Alphameric characters representing the ordinal number of<br>the body. The number must be left justified with no<br>leading zeroes, i.e., the first digit must be in column |    |
| В           | ITYPE                   | ND                          | A3                        | 4-6                              | Alphameric characters TRC denoting that the body is a truncated right angle cone.                                                                                          |    |
| С           | IC(J)                   | ND                          | A4                        | 7-10                             | Not used.                                                                                                                                                                  |    |
| D<br>E<br>F | FX(1)<br>FX(2)<br>FX(3) | Inches*<br>Inches<br>Inches | F10.5<br>F10.5<br>F10.5   | 11-20<br>21-30<br>31-40          | (X, Y, and Z coordinates, respectively, of vertex V at the center of the base of the cone (see Figure 16).                                                                 |    |
| G<br>H<br>I | FX(4)<br>FX(5)<br>FX(6) | Inches<br>Inches<br>Inches  | F10.5<br>F10.5<br>F10.5   | 41-50<br>51-60<br>61-70          | (X, Y, and Z components, respectively, of height vector (see Figure 16).                                                                                                   | Ē  |
|             |                         |                             |                           |                                  |                                                                                                                                                                            |    |
|             |                         |                             |                           |                                  | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                             | 20 |

| ID | PARA  | UNITS   | FORMAT | COLUMNS | 1954 35 36527 30 39 40 41 42 43 44 45 46 47 40 49 50 51 52 53 54 55 58 57 50 59 60 61 62 63 64 65 60 67 60 69 70 71 72 73 74 75 76 77 70 79 00  DESCRIPTION |
|----|-------|---------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | FX(7) | Inches* | F10.5  | 11-20   | Radius R1 of the larger base circle of the cone (see Figure 16).                                                                                            |
| 3  | FX(8) | Inches  | F10.5  | 21-30   | Radius R2 of the smaller base circle of the cone (see Figure 16).                                                                                           |
|    |       |         |        |         |                                                                                                                                                             |
|    |       |         |        |         |                                                                                                                                                             |
| 1  |       | 1       |        |         |                                                                                                                                                             |
|    |       |         |        |         |                                                                                                                                                             |
|    |       |         |        |         |                                                                                                                                                             |



Specify vertex  $\overline{V}$  at the center of the larger base, height vector  $\overline{H}$ , and scalars  $R_1$  and  $R_2$  denoting the radii of the larger and smaller bases, respectively.

| 371                |                 |     |                | Card Co        | lumns |       |       |       |
|--------------------|-----------------|-----|----------------|----------------|-------|-------|-------|-------|
| Number<br>of Cards | 1-3             | 4-6 | 11-20          | 21-30          | 31-40 | 41-50 | 51-60 | 61-70 |
| 1 of 2             | Solid<br>Number | TRC | V <sub>x</sub> | Vy             | Vz    | Hx    | Hy    | Hz    |
| 2 of 2             | Blan            | nk  | R <sub>1</sub> | R <sub>2</sub> |       | Bla   | nk    |       |

FIG. 16. Truncated Right Angle Cone Input

| ID | PARA  | UNITS   | FORMAT | COLUMNS | DESCRIPTION                                                                                                                                                                                      |
|----|-------|---------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | FX(7) | Inches* | F10.5  | 11-20   | If (IC(J) is blank, length L of the major axis is input (see Figure 17).  If IC(J) is not blank, radius R of the circular section taken at the center of the ellipsoid is input (see Figure 17). |
|    |       |         |        |         | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                                                   |



Specify either (1) the X, Y, Z coordinates of foci Fl and F2 and scalar L denoting the length of the major axis; or (2) the X, Y, Z coordinates of vertex  $\bar{V}$  at the geometric center, the vector  $\bar{A}$  defining the semi-major axis, and scalar R denoting the radius of the circular section taken at the center.

Card Columns

| Number<br>of Cards | 1-3             | 4-6 | 11-20           | 21-30 | 31-40           | 41-50           | 51-60           | 61-70           | IC(J) |
|--------------------|-----------------|-----|-----------------|-------|-----------------|-----------------|-----------------|-----------------|-------|
| 1 of 2             | Solid<br>Number | ELL | F1 <sub>x</sub> | Fly   | F1 <sub>z</sub> | F2 <sub>x</sub> | F2 <sub>y</sub> | F2 <sub>z</sub> | Blank |
| 2 of 2             | Bla             | nk  | L               |       |                 | Blank           |                 |                 |       |

| 1 of 2 | Solid<br>Number | ELL | v <sub>x</sub> | Vy | Vz | Ax    | Ay | Az | I |
|--------|-----------------|-----|----------------|----|----|-------|----|----|---|
| 2 of 2 | Blan            | nk  | R              |    |    | Blank |    | *  | B |

<sup>\*</sup>The two foci may be interchanged in the card format.

FIG. 17. Ellipsoid of Revolution Input

| NI   |
|------|
| 4    |
| 5    |
| 0    |
| 565- |
| w    |
| 3.   |
| 71   |
| -    |
| V    |
| 0    |
| Vol  |
| 1    |

|             | A B                     | C D                        | 6 17 18 19 20 21 22 <b>23</b> 2 | E<br>25 26 27 20 29 30 31 32 3 | F I I I I I I I I I I I I I I I I I I I                                                                                                                                |
|-------------|-------------------------|----------------------------|---------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID          | PARA                    | UNITS                      | FORMAT                          | COLUMNS                        | DESCRIPTION                                                                                                                                                            |
| A           | IC(I)                   | ND                         | 3A1                             | 1-3                            | Alphameric characters representing the ordinal number of the body. The number must be left justified with no leading zeroes, i.e., the first digit must be in column 1 |
| В           | ITYPE                   | ND                         | A3                              | 4-6                            | Alphameric characters RAW denoting that the body is a right angle wedge.                                                                                               |
| С           | IC(J)                   | ND                         | A4                              | 7-10                           | Not used.                                                                                                                                                              |
| D<br>E<br>F | FX(1)<br>FX(2)<br>FX(3) | Inches* Inches Inches      | F10.5<br>F10.5<br>F10.5         | 11-20<br>21-30<br>31-40        | (X, Y, and Z coordinates, respectively, of vertex V at one of the right-angle corners (see Figure 18).                                                                 |
| G<br>H<br>I | FX(4)<br>FX(5)<br>FX(6) | Inches<br>Inches<br>Inches | F10.5<br>F10.5<br>F10.5         | 41-50<br>51-60<br>61-70        | $X$ , Y, and Z components, respectively, of one of the legs $\overline{A}$ or $\overline{B}$ , of the right triangle (see Figure 18).                                  |
|             |                         |                            |                                 |                                |                                                                                                                                                                        |
|             |                         |                            |                                 |                                | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                         |



Specify vertex  $\overline{V}$  at one of the right-angled corners by giving the X, Y, and Z coordinates. Specify the components of the three mutually perpendicular vectors, of which two,  $\overline{A}$  and  $\overline{B}$ , are the legs of the right triangle formed, and the third,  $\overline{C}$ , is the width of the wedge.

| The second second second second | 400  |       |
|---------------------------------|------|-------|
| Card                            | Cal  | TITTO |
| Calu                            | 0.01 | Lunns |

| Number<br>of Cards | 1-3             | 4-6 | 11-20          | 21-30 | 31-40 | 41-50          | 51-60 | 61-70 |
|--------------------|-----------------|-----|----------------|-------|-------|----------------|-------|-------|
| 1 of 2             | Solid<br>Number | RAW | v <sub>x</sub> | Vy    | Vz    | A <sub>x</sub> | Ay    | Az    |
| 2 of 2             | Blan            | k   | B <sub>x</sub> | Bv    | Bz    | Cx             | Cy    | Cz    |

FIG. 18. Right Angle Wedge Input

| ID                    | PARA                                               | UNITS                                      | FORMAT                                             | COLUMNS                                            | प्रोप्त 35 अर्थान 38 अर्थ 40 41 सर्थ 43 44 सर्ध 45 44 सर्थ 49 50 51 52 53 54 55 58 57 58 58 हम्मेटा हर हम्मेटन हुए हम्मीटन हुए हम्मेटन हम्मेटन हुए हम्मेटन हम्मेटन हुए हम्मेटन हम्मेटन हम्मेटन हुए हम्मेटन हुए हम्मेटन हुए हम्मेटन हुए हम्मेटन हम्मेटन हम्मेटन हम्मेटन हम्मेटन हम्मेटन हम्मेटन हम्मेटन हम्मेटन हम |
|-----------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                     | IC(I)                                              | ND                                         | 3A1                                                | 1-3                                                | Alphameric characters representing the ordinal number of<br>the body. The number must be left justified with no<br>leading zeroes, i.e., the first digit must be in column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| В                     | ITYPE                                              | ND                                         | A3                                                 | 4-6                                                | Alphameric characters ARB denoting that the body is an arbitrary convex polyhedron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| С                     | IC(J)                                              | ND                                         | A4                                                 | 7-10                                               | Not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D<br>E<br>F<br>G<br>H | FX(1)<br>FX(2)<br>FX(3)<br>FX(4)<br>FX(5)<br>FX(6) | Inches* Inches Inches Inches Inches Inches | F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5 | 11-20<br>21-30<br>31-40<br>41-50<br>51-60<br>61-70 | (X, Y, and Z coordinates, respectively, of the first of eight vertices of the ARB (see Figures 19, 20, and 21).  (X, Y, and Z coordinates, respectively, of the second of eight vertices of the ARB (see Figures 19, 20, and 21).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                                    |                                            |                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                                                    |                                            |                                                    |                                                    | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| - |                               | UNITS                      | FORMAT         | COLUMNS                 | 29/34 35 36/37 38 38/40/41 42/42 44 45/46 47 48/49 50/51/52 53 54/55 56 57/58 59 64/61 82 63/64 65 68/67 68 68/70/71 72/73 74 75 76 77 78 79 80  DESCRIPTION |
|---|-------------------------------|----------------------------|----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D | PARA                          | UNITS                      | FURMAT         | COLUMNS                 | DESCRIPTION                                                                                                                                                  |
|   | AA(I,1)<br>AA(I,2)<br>AA(I,3) | Inches* Inches Inches      | E10.3<br>E10.3 | 11-20<br>21-30<br>31-40 | (X, Y, and Z coordinates of the Ith vertex of the ARB (see Figures 19, 20, and 21) where I=3, 5, or 7 for the third, fifth, or seventh point of the ARB.     |
|   | AA(1,1)<br>AA(1,2)<br>AA(1,3) | Inches<br>Inches<br>Inches | E10.3<br>E10.3 | 41-50<br>51-60<br>61-70 | (X, Y, and Z coordinates for the Ith vertex of the ARB (see Figures 19, 20, and 21) where I=4, 6, or 8 for the fourth, sixth, or eighth point of the ARB.    |
|   |                               |                            |                |                         |                                                                                                                                                              |
|   |                               |                            |                |                         |                                                                                                                                                              |
|   |                               |                            |                |                         |                                                                                                                                                              |
|   |                               |                            |                |                         |                                                                                                                                                              |
|   |                               |                            | 1              |                         |                                                                                                                                                              |
|   |                               |                            |                |                         |                                                                                                                                                              |

| ID |         | UNITS | FORMAT | COLUMNS | DESCRIPTION                                                                              |
|----|---------|-------|--------|---------|------------------------------------------------------------------------------------------|
| A  | IA(1,J) | ND    | 4A1    | 12-15   | Four ordinal vertex numbers for first face of the ARB (see Figures 19, 20, and 21).      |
| В  | IA(2,J) | ND    | 4A1    | 17-20   | Four ordinal vertex numbers for second face of the ARB (see Figures 19, 20, and 21).     |
| С  | IA(3,J) | ND    | 4A1    | 22-25   | Four ordinal vertex numbers for third face of the ARB (see Figures 19, 20, and 21).      |
| D  | IA(4,J) | ND    | 4A1    | 27-30   | Four ordinal vertex numbers for the fourth face of the ARB (see Figures 19, 20, and 21). |
| E  | IA(5,J) | ND    | 4A1    | 32-35   | Four ordinal vertex numbers for the fifth face of the ARB (see Figures 19, 20, and 21).  |
| 7  | IA(6,J) | ND    | 4A1    | 37-40   | Four ordinal vertex numbers for the sixth face of the ARB (see Figures 19, 20, and 21).  |
|    |         |       |        |         | CARD                                                                                     |
|    |         |       |        |         | 9                                                                                        |
|    |         |       |        |         | L. C.                                                |



The arbitrary convex polyhedron may be a four-, five-, or six-faced figure, each face having either three or four vertices. The four vertices of a face must lie in a plane. An ordinal number (1 to 8) is assigned to each vertex. Each vertex is listed giving the X, Y, Z coordinates. For each face of the figure, list the four ordinal vertex numbers in a clockwise or counterclockwise direction.

|                    |                   |     | C              | ard Col        | umns           |                |                |                |
|--------------------|-------------------|-----|----------------|----------------|----------------|----------------|----------------|----------------|
| Number<br>of Cards | 1-3               | 4-6 | 11-20          | 21-30          | 31-40          | 41-50          | 51-60          | 61-70          |
| 1 of 5             | Solid<br>  Number | ARB | 1 <sub>x</sub> | 1 <sub>y</sub> | 1 <sub>z</sub> | 2 <sub>x</sub> | 2 <sub>y</sub> | 2 <sub>z</sub> |
| 2 of 5             |                   |     | 3 <sub>x</sub> | 3 <sub>y</sub> | 3 <sub>z</sub> | 4 <sub>x</sub> | 4 <sub>y</sub> | 4 <sub>z</sub> |
| 3 of 5             | 1                 |     | 5 <sub>x</sub> | 5 <sub>y</sub> | 5 <sub>2</sub> | 6 <sub>x</sub> | 6 <sub>y</sub> | 6 <sub>z</sub> |
| 4 of 5             |                   |     | 7 <sub>x</sub> | 7 <sub>y</sub> | 7 <sub>z</sub> | 8 x            | 8 <sub>y</sub> | 8 z            |
|                    |                   |     | 12-15          | 17-20          | 20-25          | 27-30          | 32-35          | 37-40          |
| 5 of 5             |                   |     | 1234           | 5678           | 3487           | 1265           | 2376           | 1485           |

FIG. 19. Six-Faced Arbitrary Convex Polyhedron Input



6 VERTICES

Faces: 3124 7658 1375

2376 1265 1265

5 VERTICES

Faces: 1234 6435 6128 6237 7415 7415

## Card Columns

| Number<br>of Cards | 1-3             | 4-6 | 11-20          | 21-30          | 21 /0          | /2 50          | F1 60          | 2              |
|--------------------|-----------------|-----|----------------|----------------|----------------|----------------|----------------|----------------|
| 1 of 5             | Solid<br>Number | ARB | 11-20          | 1,             | 31-40          | 2,             | 51-60          | 61-70          |
| 2 of 5             |                 |     | 3 <sub>x</sub> | 3 <sub>y</sub> | 3 <sub>z</sub> | 4 <sub>x</sub> | 4 <sub>y</sub> | 4 z            |
| 3 of 5             |                 |     | 5 <sub>x</sub> | 5 <sub>y</sub> | 5 <sub>z</sub> | 6 x            | 6 <sub>v</sub> | 6 <sub>z</sub> |
| 4 of 5             |                 |     | 7 <sub>x</sub> | 7 <sub>y</sub> | 7 <sub>z</sub> | 8 <sub>x</sub> | 8 <sub>y</sub> | 8 <sub>z</sub> |
|                    | ,               |     | 12-15          | 17-20          | 22-25          | 27-30          | 32-35          | 37-40          |
| 5 of 5             |                 |     |                | Us             | e Number       | s Above        | 2              |                |

FIG. 20. Five-Faced Arbitrary Convex Polyhedron Input



| 1-3           | 4-6   | 50 -8          |                         | 1.0                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |
|---------------|-------|----------------|-------------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 4-0   | 11-20          | 21-30                   | 31-40                                               | 41-50                                                 | 51-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61-70                                                                                                                                                        |
| olid<br>umber | ARB   | 1 <sub>x</sub> | 1 <sub>y</sub>          | 1 <sub>z</sub>                                      | 2 <sub>x</sub>                                        | 2 <sub>y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 <sub>z</sub>                                                                                                                                               |
|               |       | 3 <sub>x</sub> | 3 <sub>y</sub>          | 3 <sub>z</sub>                                      | 4 <sub>x</sub>                                        | 4 <sub>y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 z                                                                                                                                                          |
|               |       | 5,             | 5 <sub>v</sub>          | 5 <sub>z</sub>                                      | 6 <sub>x</sub>                                        | 6 <sub>y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 <sub>2</sub>                                                                                                                                               |
|               |       | 7 <sub>x</sub> | 7 <sub>y</sub>          | 7 <sub>z</sub>                                      | 8 <sub>x</sub>                                        | 8<br>y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 <sub>z</sub>                                                                                                                                               |
|               |       | 12-15          | 17-20                   | 22-25                                               | 27-30                                                 | 32-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37-40                                                                                                                                                        |
|               |       | 3127           | 2146                    | 4328                                                | 1345                                                  | 3127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3127                                                                                                                                                         |
|               | umber | umber ARB      | 12-15<br>3x<br>5x<br>7x | 12-15 17-20 3x 3y 5x 5y 7x 7y 12-15 17-20 3127 2146 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Jame     Jame | 3x     3y     3z     4x     4y       5x     5y     5z     6x     6y       7x     7y     7z     8x     8y       12-15     17-20     22-25     27-30     32-35 |

FIG. 21. Four-Faced Arbitrary Convex Polyhedron Input

| NI |
|----|
| +  |
| U  |
| 9  |
| 5  |
| w  |
| 1  |
| H  |
| 4  |
| 2  |
| H  |

|             | 12365                                                 | A                                          | 17 10/19 20 21/22 23 24                            | B<br>25 26 27 20 29 30 31 32 3                     | C D E F  1304 35 36/37 30 34/40 41 42/43 44 45/46 47 44/43 50/51/52 53 54/55 55 57/50 53 64/61 67 64/67 65 64/67 60 64/70/71 72/73 74 75 76 77 70 79 60                                                                                                     |
|-------------|-------------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D           | PARA                                                  | UNITS                                      | FORMAT                                             | COLUMNS                                            | DESCRIPTION                                                                                                                                                                                                                                                 |
| A S C C E F | FX(7)<br>FX(8)<br>FX(9)<br>FX(10)<br>FX(11)<br>FX(12) | Inches* Inches Inches Inches Inches Inches | F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5<br>F10.5 | 11-20<br>21-30<br>31-40<br>41-50<br>51-60<br>61-70 | $X$ , Y, and Z components of the vector $\overline{A}$ describing the semi-major axis of the larger ellipse (see Figure 22).<br>$X$ , Y, and Z components of the vector $\overline{B}$ describing the semi-minor axis of the larger ellipse (see Figure 22) |
|             |                                                       |                                            |                                                    |                                                    |                                                                                                                                                                                                                                                             |
|             |                                                       |                                            |                                                    |                                                    |                                                                                                                                                                                                                                                             |
|             |                                                       |                                            |                                                    |                                                    | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                                                                                                                              |

| ID | PARA   | UNITS | FORMAT | COLUMNS | 13/34 35 36/37 38 39/40 41 42/43 44 45/46 47 48/49 50 51/52 53 54/55 56 57/58 59 64/61 62 63/64 65 64/67 68 64/70 71 72/73 74 75 76 77 78 79 80  DESCRIPTION |
|----|--------|-------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  | FX(13) | NP    | F10.5  | 11-20   | P, the ratio of the larger ellipse to the smaller ellipse (see Figure 22).                                                                                   |
|    |        |       |        |         |                                                                                                                                                              |



Specify the coordinates of vertex  $\overline{V}$  at the center of the larger ellipse; and the X, Y, and Z components of height vector  $\overline{H}$  and vectors A and B describing the semi-major and semi-minor axes. Specify P, the ratio of the larger to the smaller ellipse. (NOTE: Height vector  $\overline{H}$  does not have to be perpendicular to the base plane.)

Card Column

| Number<br>of Cards | 1-3             | 4-6 | 11-20          | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 |
|--------------------|-----------------|-----|----------------|-------|-------|-------|-------|-------|
| 1 of 3             | Solid<br>Number | TEC | v <sub>x</sub> | Уу    | Vz    | Hx    | Ну    | Hz    |
| 2 of 3             |                 |     | Ax             | Ay    | Az    | Bx    | Ву    | Bz    |
| 3 of 3             |                 |     | P              |       |       |       |       |       |

FIG. 22. Truncated Elliptic Cone Input

| - | 1.1   |                           |                           |                            | ARS.                                                                                                             | CARD: 14A                              |
|---|-------|---------------------------|---------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|   | A 1   | B 7 8 9 10 11 12 13 14 15 | 16 17 18/19 20 21/22 23 2 | 425 26 27/20 29 30/31 32 3 | 3 34 35 3 <b>6 </b> 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 64 61 82 63 64 85 66 67 | 50 54/70 71 73/73 74 75 76 77 70 79 00 |
| D | PARA  | UNITS                     | FORMAT                    | COLUMNS                    | DESCRIPTION                                                                                                      |                                        |
|   | IC(I) | ND                        | 3A1                       | 1-3                        | Alphameric characters representing<br>the body. The number must be left<br>leading zeroes, i.e., the first dig   | justified with no                      |
|   | ITYPE | ND                        | A3                        | 4-6                        | Alphameric characters ARS denoting arbitrary curved surface.                                                     | that the body is an                    |
|   |       |                           |                           |                            |                                                                                                                  |                                        |
|   |       |                           |                           |                            |                                                                                                                  |                                        |
|   |       |                           |                           |                            |                                                                                                                  |                                        |
|   |       |                           |                           |                            |                                                                                                                  |                                        |
|   |       |                           |                           |                            |                                                                                                                  |                                        |
|   |       |                           |                           |                            |                                                                                                                  |                                        |
|   |       |                           |                           |                            |                                                                                                                  |                                        |

| ID     | PARA       | UNITS    | FORMAT     | COLUMNS        | 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 68 61 62 65 64 65 68 67 68 68 70 77 72 73 74 75 76 77 78 79 88  DESCRIPTION |  |  |  |  |  |
|--------|------------|----------|------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| A<br>B | MAX<br>NAX | ND<br>ND | 110<br>110 | 11-20<br>21-30 | Number of curves which are to be input (see Figure 23).  Number of points to be input for each curve (see Figure 23).                                     |  |  |  |  |  |
|        |            |          |            |                |                                                                                                                                                           |  |  |  |  |  |
|        |            |          |            |                |                                                                                                                                                           |  |  |  |  |  |
|        |            |          |            |                |                                                                                                                                                           |  |  |  |  |  |
|        |            |          |            |                |                                                                                                                                                           |  |  |  |  |  |
|        |            |          |            |                |                                                                                                                                                           |  |  |  |  |  |
|        |            |          |            |                |                                                                                                                                                           |  |  |  |  |  |



Specify the number of curves (M) to be used and the number of points (N) to be used for each curve. A surface is constructed between curve 1 and curve 2, between curve 2 and curve 3, etc. The user must be sure that the described figure is closed and solid. Note that the first and last points are the same for all curves, and the first curve is identical to the last. Start each curve on a new card.

| Number<br>of Cards                | 1-3             | 4-6 | 11-20  | 21-30  | 31-40  | 41-50  | 51-60  | 61-70  |
|-----------------------------------|-----------------|-----|--------|--------|--------|--------|--------|--------|
| 1 of n                            | Solid<br>Number | ARS |        |        |        |        |        |        |
| 2 of n                            |                 |     | М      | N      |        |        |        |        |
| 3 of n                            |                 |     | X(1,1) | Y(1,1) | Z(1,1) | X(1,2) | Y(1,2) | Z(1,2) |
| :                                 |                 |     | :      |        |        |        |        |        |
| $2 + \frac{N+1}{2}$ of n          |                 |     | X(1,N) | Y(1,N) | Z(1,N) | -      |        |        |
|                                   | 1               |     | X(2,1) |        |        |        |        |        |
|                                   |                 |     | :      |        |        |        |        |        |
|                                   |                 |     | X(M,1) |        |        |        |        |        |
|                                   |                 |     | 1      |        |        |        |        |        |
| $n=2+M\left(\frac{N+1}{2}\right)$ |                 |     | X(M,N) | Y(M,N) | Z(M,N) |        |        |        |

FIG. 23. Arbitrary Curved Surface Input

| ID |             | UNITS   | FORMAT                     | COLUMNS                                                                                                                                                                | बीउन 35 अविता उन अर्थ बठ बर बर्भ बठ बन वर्ष बठ उर्ज 52 53 5वीडर 53 5वीडर 58 6वीडर वह हवीडन वह ब्लीवर वन ब्लीरठ रा रथीरउ रन रह रह रार रन रव रव रव विव<br>DESCRIPTION |                                              |  |  |  |  |
|----|-------------|---------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|
| В  | FX(7) FX(8) | Inches* | F10.5 11-20<br>F10.5 21-30 | Distance R1 from the center of the torus to the mid-<br>point of the circular cross-section (see Figure 24).  Radius R2 of the circular cross-section (see Figure 24). |                                                                                                                                                                     |                                              |  |  |  |  |
|    |             |         |                            |                                                                                                                                                                        | *Any unit of length may be used for target data, but the units throughout the input.                                                                                | (inches, feet, meters)<br>must be consistent |  |  |  |  |



Specify vertex  $\overline{V}$  at the center of the torus, normal  $\overline{N}$  to the plane in which the locus at mid-points of the circular cross-sections lies, and scalars R1, the distance from the center to the mid-point of the circular cross-section, and R2, the radius of the circular cross section.

Card Column

| Number<br>of Cards | 1-3             | 4-6 | 11-20          | 21-30 | 31-40 | 41-50 | 51-60          | 61-70 |
|--------------------|-----------------|-----|----------------|-------|-------|-------|----------------|-------|
| 1 of 2             | Solid<br>Number | TOR | V <sub>x</sub> | Vy    | Vz    | Nx    | N <sub>v</sub> | N     |
| 2 of 2             | Blank           |     | R1             | R2    | Blank |       |                |       |

FIG. 24. Torus Input

|    |                |          |          | 25 26 27 28 29 30 31 32 3 | J R L M N O P O R S  ADA 325 36537 38 38 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55 58 57 58 59 58 68 67 68 68 70 71 72 73 74 75 76 77 78 79 88  DESCRIPTION |  |  |  |
|----|----------------|----------|----------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ID | PARA           | UNITS    | FORMAT   | COLUMNS                   | DESCRIPTION                                                                                                                                                       |  |  |  |
| A  | IR             | ND       | 15       | 1-5                       | Region number                                                                                                                                                     |  |  |  |
| В  | IA(1)          | ND       | A2       | 7–8                       | OR operator must be input in IA(1) if the OR operator appears elsewhere in region description.                                                                    |  |  |  |
| С  | IN(1)          | ND       | 15       | 9-13                      | Ordinal number of the body with the + or - operator as required. A + is implied if sign omitted.                                                                  |  |  |  |
| D  | IA(2)          | ND       | A2       | 14-15                     | OR operator if used with second term of region description                                                                                                        |  |  |  |
| E  | IN(2)          | ND       | 15       | 16-20                     | Ordinal number of the body with the + or - operator as required.                                                                                                  |  |  |  |
| F  | IA(3)<br>IN(3) | ND<br>ND | A2<br>15 | 21-22<br>23-27            | Control of their operators of                                                                                                                                     |  |  |  |
|    | :              | :        | 1        | :                         | Enter up to nine bodies and their operators. If more bodies are required to describe region, use                                                                  |  |  |  |
|    |                | - :      | 1        | :                         | additional cards as described on Card 16B.                                                                                                                        |  |  |  |
|    | :              | 1.       | 11.      |                           |                                                                                                                                                                   |  |  |  |
| R  |                | ND<br>ND | A2<br>15 | 63-64<br>65-69            |                                                                                                                                                                   |  |  |  |
| S  | IN(9)          | ND.      |          |                           | _                                                                                                                                                                 |  |  |  |
|    |                |          |          |                           |                                                                                                                                                                   |  |  |  |
|    |                |          |          |                           |                                                                                                                                                                   |  |  |  |

| 7 | DADA           | 6 7 8 9 10 11 12 13 14 15 | 16 17 10 19 20 21 22 23 2 | 25 26 27 20 29 30 31 32 | 33/34/35 36/37 38 30/40 41 42/43/44 45/46 47 48/49 50/51/52 53 54/55/56 57/58 59 64/61 62 K1/64/65 66/67 68 69/70 71 78/73 74 75 76 77 78 79 89 |
|---|----------------|---------------------------|---------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| D | PARA           | UNITS                     | FORMAT                    | COLUMNS                 | DESCRIPTION                                                                                                                                     |
| A | IA(N)          | ND                        | A2                        | 7-8                     | OR operator if used.                                                                                                                            |
| 1 | IN(N)          | ND                        | 15                        | 9-13                    | Ordinal number of the body with + or - operator as required.                                                                                    |
|   | IA(N)<br>IN(N) | ND<br>ND                  | A2<br>I5                  | 14-15<br>16-20          |                                                                                                                                                 |
|   | :              | :                         | 1                         | :                       | Enter bodies and their operators as required for each region.                                                                                   |
|   | IA(N)          | ND<br>ND                  | A2                        | 63-64                   | Note:                                                                                                                                           |
|   | IN(N)          | ND                        | 15                        | 65-69                   | Follow the last region card with a card with -1 in columns 1-5 to signify the end of the region data.                                           |
|   |                |                           |                           |                         |                                                                                                                                                 |
|   |                |                           |                           |                         |                                                                                                                                                 |
|   |                |                           |                           |                         | 1                                                                                                                                               |

| Z      |
|--------|
| Z      |
| 1      |
| 5      |
| Č      |
| 565-3- |
| w      |
| 1.     |
| 7      |
|        |
| V      |
| Vol    |
| -      |
| H      |
| 1.3    |

| _  |        |       |        | COLUMNS | pa 35 38 27 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 68 61 62 63 64 65 68 67 68 68 70 71 72 73 74 75 76 77 78 79 80  DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|--------|-------|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID | PARA   | UNITS | FORMAT | COLUMNS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A  | NRAYS  | ND    | 110    | 1-10    | Total number of rays to be processed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| В  | NG1ERR | ND    | 110    | 11-20   | Maximum allowable number of errors. If NGIERR is left blank, the computer assigns a value of 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1  |        |       |        |         | Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |        |       |        |         | Optional special ray tracing computations are performed when ITESTG (columns 21-30 in Card 1) has a non-zero value. A specified number of rays are tracked through a specified portion of the target to verify that the region descriptions have been input properly. Errors discovered in target descriptions will be printed out. If errors in excess of the number specified by NGIERR are found, execution of the special ray tracing will be terminated. The number (n) of cards required for this optional input is twice the number of rays specified plus one (see Card 17B). |
|    |        |       |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |        |       |        |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                  | l. adv                              | A also a discussion of       | B                       | 125 26 27 Da 29 2021 22 2       | C<br>day as askar an ankan at ankan an as | D<br>46 47 4 <b>0</b> 49 50 51 52 52 5 <b>0</b> 55 56 57 58 59 <b>60</b> 61 62 | 2 53 64 65 66 67 60 69 70 71 72 73 74 75 76 77 78 79 80 |            |
|------------------|-------------------------------------|------------------------------|-------------------------|---------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|------------|
| LD               | PARA                                | UNITS                        | FORMAT                  | COLUMNS                         |                                           | DESCRIPT                                                                       | CION                                                    |            |
| A<br>B<br>C<br>D | XBF(1)<br>XBF(2)<br>XBF(3)<br>IRFIN | Inches* Inches Inches Inches | E15.7<br>E15.7<br>E15.7 | 1-15<br>16-30<br>31-45<br>46-60 | ending poi                                | nt.                                                                            | spectively, of the ray's the ray's ending point.        |            |
|                  |                                     |                              |                         |                                 | *Any unit                                 | of length may be u                                                             | sed (inches, feet, meters)<br>ts must be consistent     | Carro. 1/C |

| _      | 123/15       | 6 7 8 9 ho 11 12/12 14 15 | 16 17 18/19 20 21/22 23 2 | d25 26 27 28 29 30 31 32 3        | 3 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 68 61 62 63 64 6:                                                                                                                                             | S 6867 68 6970 71 72/73 74 75 76 77 78 79 80                                                                   |
|--------|--------------|---------------------------|---------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| ID     | PARA         | UNITS                     | FORMAT                    | COLUMNS                           | DESCRIPTION                                                                                                                                                                                                                                   |                                                                                                                |
| A      | IR<br>NG1ERR | ND<br>ND                  | 110                       | 1-10                              | Region number containing vertex :                                                                                                                                                                                                             | ee Figure 25).                                                                                                 |
| NGIERR | ND           | 110                       | 11-20                     | Maximum allowable number of error | rs.                                                                                                                                                                                                                                           |                                                                                                                |
|        |              |                           |                           |                                   | Volume computations are optional when IVOLUM (columns 61-70 in Cardescription of the volume computation involved is shown in Figure 25. target descriptions will be printexcess of the number specified at the volume computations will be to | rd 1) is non-zero. A ations and the geometry Errors discovered in ted out. If errors in re found, execution of |
|        |              |                           |                           |                                   |                                                                                                                                                                                                                                               | CANO.                                                                                                          |
|        |              |                           |                           |                                   |                                                                                                                                                                                                                                               |                                                                                                                |

| IN    |
|-------|
|       |
| S     |
| 6     |
| +565- |
| w     |
|       |
| 7     |
| 71    |
| <     |
| 0     |
| Vol   |
|       |

|   | La des                  | A<br>dzachowalski ski | 6 17 18h 9 20 01 27 23 24 | B<br>des 26 27/20 29 30/31 32 3 | C<br>3 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 68 61 62 63 | ge4 65 egje7 60 egj70 71 72 73 74 75 76 77 78 79 80 |
|---|-------------------------|-----------------------|---------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| D | PARA                    | UNITS                 | FORMAT                    | COLUMNS                         | DESCRIPTI                                                                                        |                                                     |
|   | XV(1)<br>XV(2)<br>XV(3) | Inches* Inches Inches | E20.8<br>E20.8            | 1-20<br>21-40<br>41-60          | (X, Y, and Z coordinates, respe<br>an imaginary box (see Figure 2                                | ectively, of the vertex of (5).                     |
|   |                         |                       |                           |                                 | *Any unit of length may be use for target data, but the units throughout the input.              |                                                     |

| P                                       | Torus vorum             |                             | LIUIIAI).                | Inira of                      | six cards required.                                                                               | CARD: 18C                 |        |
|-----------------------------------------|-------------------------|-----------------------------|--------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|--------|
|                                         | 1 2 3 4 5               | A 8 10 11 12 13 14 15       | 16 17 18h9 20 21 22 23 2 | B<br>d25 26 27/20 29 30/31 32 | C<br>33 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 64 61 62 63 | 111                       |        |
| D                                       | PARA                    | UNITS                       | FORMAT                   | COLUMNS                       | DESCRIPTI                                                                                         | ON                        | _      |
| A 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | XT(1)<br>XT(2)<br>XT(3) | Inches*<br>Inches<br>Inches | E20.8<br>E20.8           | 1-20<br>21-40<br>41-60        | (X, Y, and Z coordinates, respectively)                                                           | ctively, of the upper rig | gh     |
|                                         |                         |                             |                          |                               |                                                                                                   |                           | 7,0077 |
|                                         |                         |                             |                          |                               | *Any unit of length may be used<br>for target data, but the units of<br>throughout the input.     | (inches, feet, meters)    | 100    |

| TD          |                         |                       |                         |                        | C 13 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 56 55 58 57 56 59 68 61 62 63 64 65 66 67 68 68 70 71 72 73 74 75 76 77 78 78 80 | _   |
|-------------|-------------------------|-----------------------|-------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| D           | PARA                    | UNITS                 | FORMAT                  | COLUMNS                | DESCRIPTION                                                                                                                                       |     |
| A<br>B<br>C | XO(1)<br>XO(2)<br>XO(3) | Inches* Inches Inches | E20.8<br>E20.8<br>E20.8 | 1-20<br>21-40<br>41-60 | (X, Y, and Z coordinates, respectively, of the lower legorner of an imaginary box front (see Figure 25).                                          | Et  |
|             |                         |                       |                         |                        | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                    | T81 |

|             | 1                       | Α                     |                         | В                      | C                                                                                         | CARD: 18E                                                                |
|-------------|-------------------------|-----------------------|-------------------------|------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| ID          | PARA                    | UNITS                 | FORMAT                  | COLUMNS                | 23 34 35 36 37 38 39 40 41 42 43 44 45 46 47 40 49 50 51 52 53 54 55 56 57 58 59<br>DESCR | sefer ez esfer es esfer es esfro 71 72/13 74 75 76 77 78 79 80<br>IPTION |
| A<br>B<br>C | XA(1)<br>XA(2)<br>XA(3) | Inches* Inches Inches | E20.8<br>E20.8<br>E20.8 | 1-20<br>21-40<br>41-60 | (X, Y, and Z coordinates, recorner of an imaginary box                                    | espectively, of the lower right<br>back (see Figure 25).                 |
|             |                         |                       |                         |                        |                                                                                           |                                                                          |
|             |                         |                       |                         |                        | *Any unit of length may be unit<br>for target data, but the unit<br>throughout the input. | used (inches, feet, meters) its must be consistent                       |

| 111  | N |   |
|------|---|---|
| TUUU | 3 |   |
|      |   |   |
| -    | í | ֡ |
|      |   |   |
| YOF  | 5 |   |
| ,    |   |   |

|    | r, des | A slovesky relation | 6 17 18h9 2021 22 23 24 | B<br>dos 26 27/20 20 30/31 32 3 | 3 34 35 36 37 38 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 68 61 62 63 64 65 64                                                                                                                                                                               | der en endro 71 7723 7475 76 77 78 79 00                                       |
|----|--------|---------------------|-------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| ID | PARA   | UNITS               | FORMAT                  | COLUMNS                         | DESCRIPTION                                                                                                                                                                                                                                                                        |                                                                                |
| В  | DOD    | Inches*             | E20.8                   | 1-20 21-40                      | Horizontal dimension of grid cell Vertical dimension of grid cell.  Note: Volume of any region(s) may be incomputed volume(s).  1-10 I10 IR1 Region 11-30 E20.8 VR Volume of A blank card is needed to signal If this option is not to be used, VOLUM requires at least seven care | put and compared with  Region  the end of these cards.  a blank card is needed |
|    |        |                     |                         |                                 | *Any unit of length may be used (i<br>for target data, but the units mus<br>throughout the input.                                                                                                                                                                                  |                                                                                |



Special computations are performed to determine the volume of each region contained within an imaginary box. The box is defined by specifying the X, Y, and Z coordinates of vertex  $\overline{\text{XV}}$  and three other corners,  $\overline{\text{XO}}$ ,  $\overline{\text{XT}}$ , and  $\overline{\text{XA}}$ . Grid cells are established on the front face of the box by specifying the vertical and horizontal grid cell dimensions, DT and DOD, respectively.

Rays are traced from the lower right corner of each grid cell from the front to the back of the box, and the distances through each region are computed and stored in an array. When all rays have been traced and the total distances through each region accumulated, the region volumes are computed from the region distances and the cell dimensions.

FIG. 25. Special Volume Computation

| N   |
|-----|
| 4   |
| 565 |
| 0   |
| ĭ   |
| w   |
|     |
| 7   |
| .71 |
| <   |
| 01  |
|     |
| H   |

|    |       | A     | B<br> 16 17 18 19 20 21  22 23 2 |         | 1ank<br>13334 35 3637 38 3840 41 4243 44 4346 47 4849 50 51/52 53 5855 56 57/58 59 68/61 62 63/64 65 68/67 68 68/70 71 78/73 74 75 76/77 78 79 80                                                                                                     |
|----|-------|-------|----------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID | PARA  | UNITS | FORMAT                           | COLUMNS | DESCRIPTION                                                                                                                                                                                                                                           |
| A  | IRN   | ND    | 110                              | 1-10    | Ordinal number of the region being identified.                                                                                                                                                                                                        |
| 3  | ICODE | ND    | 110                              | 11-20   | Code number relating the region in question to a particular target component (see Table 6).                                                                                                                                                           |
| С  | IDENT | ND    | 110                              | 21-30   | Space code when region in question is air space (ICODE=0). Space codes have values between 1 and 9 (see Table 6). If region in question is related to a component (ICODE > 0), IDENT may be used as a component class identifier in following manner. |
|    |       |       |                                  |         | Ident Component Class  10 Skirting material 20 Hull and turret armor                                                                                                                                                                                  |
|    |       |       |                                  |         | These class identifiers will be included in grid cell output.                                                                                                                                                                                         |
| D  | A(I)  | ND    | 6A6                              | 41-76   | Alphameric characters used to verbally describe the region in question.  Follow last region identification card with a blank card.                                                                                                                    |
|    |       |       | ľ                                |         |                                                                                                                                                                                                                                                       |

TABLE 6. Region Identification Codes

|          | Component Codes                            |
|----------|--------------------------------------------|
| ICODE    | Type of Component                          |
| 001-099  | Refer to internal components               |
| 100-199  | Refer to types of armor                    |
| 200-299  | Refer to fuel components                   |
| 300-399  | Refer to miscellaneous exterior components |
| 400-499  | Refer to gun components                    |
| 500-599* | Refer to track suspension components       |
| 600-699  | Refer to wheel suspension components       |
| 700-799  | Refer to power train components            |
| 800-899  | Refer to miscellaneous components          |
| 900-998  | Not used at present                        |
| 999      | Soil, ground                               |

| Space Codes |                        |  |  |  |  |
|-------------|------------------------|--|--|--|--|
| IDENT       | Type of Space          |  |  |  |  |
| 01          | External air           |  |  |  |  |
| 02          | Crew compartment air   |  |  |  |  |
| 03          | Not used at present    |  |  |  |  |
| 04          | Not used at present    |  |  |  |  |
| 05          | Engine compartment air |  |  |  |  |
| 06          | Not used at present    |  |  |  |  |
| 07          | Not used at present    |  |  |  |  |
| 08          | Not used at present    |  |  |  |  |
| 09          | No further target      |  |  |  |  |

\*ICODE = 501 is reserved for the track. The computer assigns 502 if the track edge is hit.

| N    |
|------|
| 4    |
| 56   |
| 9    |
| 5    |
| ů    |
| - 1  |
| 71   |
|      |
| Vol. |
| 0    |
| -    |
| H    |

|    | A<br>1 2 3 4 5 | B C   | D<br>16 17 18/19 20/21/22 23 2 | 25 26 27 28 29 30 31 32 3 | 1/34 35 36/37 38 38/40 41 42/43 44 45/46 47 48/49 50 51/52 53 54/55 56 57/58 59 64/61 62 63/64 65 64/67 68 64/70 71 72/73 74 75 76 77 78 79 80                                                                                                                            |
|----|----------------|-------|--------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID | PARA           | UNITS | FORMAT                         |                           | DESCRIPTION                                                                                                                                                                                                                                                               |
| A  | NOAA           | ND    | 15                             | 1-5                       | Number of attack angles to be computed for grid cell output.                                                                                                                                                                                                              |
| В  | IWOT           | ND    | 15                             | 6-10                      | <pre>IWOT # 0. Grid cell data will be written on magnetic tape unit 1. IWOT = 0. No output on magnetic tape unit 1.</pre>                                                                                                                                                 |
| c  | ITAPE8         | ND    | 15                             | 11-15                     | <pre>ITAPE8 = 0. Grid cell data will be output on printer. ITAPE8 ≠ 0. Grid cell data output will be suppressed on printer, but Gl errors will be printed.</pre>                                                                                                          |
| D  | NAREA          | ND    | 15                             | 16-20                     | Optional calls to Subroutine AREA will be made for the number of attack angles specified by NAREA. Subroutine AREA computes the presented area of the target as viewed from a specified attack angle. Additional input for Subroutine AREA is described on Cards 22A-22C. |
|    |                |       |                                |                           |                                                                                                                                                                                                                                                                           |
|    |                |       |                                |                           |                                                                                                                                                                                                                                                                           |

|    | 1 2 3 4 5 | A 6 7 8 9 0 11 12 13 14 15 10 | B<br>17 18/19 20 21/22 23 2 | C<br>425 26 27 28 29 30 31 32 3 | D E<br>1934 35 36937 38 39/40 41 42/43 44 45/46 47 48/49 50 51/52 53 54/55 56 57/58 59 60/61 62 63/64 65 66/67 68 64/70 71 72/73 74 75 76 77 78 79 80 |
|----|-----------|-------------------------------|-----------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID | PARA      | UNITS                         | FORMAT                      | COLUMNS                         | DESCRIPTION                                                                                                                                           |
| A  | A         | Degrees                       | E12.8                       | 1-12                            | Attack azimuth angle measured from the positive X axis in a counterclockwise direction.                                                               |
| В  | E         | Degrees                       | E12.8                       | 13-24                           | Attack elevation angle measured from the X-Y plane positive upward.                                                                                   |
| Ç  | ENGTH     | Inches*                       | E12.8                       | 25-36                           | Distance from coordinate system origin to the grid plane. Must be in the region specified by IRSTRT.                                                  |
| D  | ZSHIFT    | Inches                        | E12.8                       | 37-48                           | Distance the grid plane is to be shifted in the Z direction.                                                                                          |
| E  | GROUND    | Inches                        | E12.8                       | 49-60                           | Z coordinate of ground level. If Z coordinate of starting point of ray < GROUND, ray is not tracked.                                                  |
|    |           |                               |                             |                                 |                                                                                                                                                       |
|    |           |                               |                             |                                 |                                                                                                                                                       |
|    |           |                               |                             |                                 | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                        |

|   | 1  | 2 | 3 | 4 | 5 | 6 | 7  |
|---|----|---|---|---|---|---|----|
|   | 8  |   |   |   |   |   | 14 |
| N | 15 |   |   |   |   |   | 21 |
|   | 22 |   |   |   |   |   | 28 |
|   | 29 |   |   |   |   |   | 35 |

Grid plane is specified by the number of grid cells in the horizontal and vertical directions, NX and NY, respectively, and the dimensions of the grid cells, CELSIZ. The cells are numbered starting in the upper right corner and incremented from right to left. The grid plane is assumed to be centered over the target coordinate origin at a backoff distance such that all rays originate in one region outside the target. The grid plane may be relocated by specifying a distance in the X, Y, and Z directions (XSHIFT, YSHIFT, ZSHIFT).

FIG. 26. Grid Plane Input

|     |        |       | V-     |         | 304 35 3637 38 3840 41 4343 44 4546 47 4849 50 \$1 52 53 54 55 56 57 58 59 6861 82 63 64 65 68 67 68 69 70 71 72 73 74 1/5 76 77 78 79 80                                                                                                                                                                                          |
|-----|--------|-------|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11) | PARA   | UNITS | FORMAT | COLUMNS | DESCRIPTION                                                                                                                                                                                                                                                                                                                        |
| A   | NX     | ND    | 110    | 1-10    | Number of horizontal cells in grid plane (see Figure 26)                                                                                                                                                                                                                                                                           |
| В   | NY     | ND    | 110    | 11-20   | Number of vertical cells in grid plane (see Figure 26).                                                                                                                                                                                                                                                                            |
| С   | IRSTRT | ND    | 110    | 21-30   | Region number containing starting points of rays.                                                                                                                                                                                                                                                                                  |
| D.  | IENC   | ND    | 110    | 31-40   | Region number containing ending points of rays.                                                                                                                                                                                                                                                                                    |
| E   | NG1ERR | ND    | 110    | 41-50   | Maximum allowable number of target description errors. If errors in excess of NGIERR are found, ray tracing terminates.                                                                                                                                                                                                            |
| ?   | NSTART | ND    | 110    | 51-60   | Grid cell number of first ray to be processed (see Figure 26).                                                                                                                                                                                                                                                                     |
| 3   | NEND   | ND    | 110    | 61-70   | Not used.                                                                                                                                                                                                                                                                                                                          |
| н   | CELLUN | ND    | A2     | 71-72   | Alphameric characters IN, FT, CM or M, representing inches, feet, centimeters, or meters, respectively, denoting the units which are used to specify grid cell dimensions.                                                                                                                                                         |
| I.  | AREAUN | ND    | A2     | 73-74   | Alphameric characters IN, FT, CM, or M representing square inches, square feet, square centimeters or square meters denoting the units of area desired. CELLUN and AREAUN may have different units. If CELLUN and AREAUN are blank, units of inches and square inches are used. The character M must be placed in column 71 or 73. |

| NI  |
|-----|
| 4   |
| 56  |
| 9   |
| Ģ   |
| w   |
|     |
| 7   |
| -71 |
| <   |
| Vol |
| -   |
| H   |

|   | 1.2.36.5 | A ala a ha 11 1213 14 15h | B<br>17 10h9 20 21/22 23 24 | C<br>125 26 27 20 29 30 31 32 3 | D E<br>9/24 35 36/37 30 38/40 41 42/43 44 45/46 47 48/49 50 51/52 53 54/55 56 57/58 59 68/67 62 63/64 65 68/67 68 68/70 71 72/73 74 75 76 77 70 79 100 |
|---|----------|---------------------------|-----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |          |                           |                             | COLUMNS                         | DESCRIPTION                                                                                                                                            |
| A | A        | Degrees                   | E12.8                       | 1-12                            | Attack azimuth angle measured from the positive X axis in a counterclockwise direction.                                                                |
| В | E        | Degrees                   | E12.8                       | 13-24                           | Attack elevation angle measured from the X-Y plane positive upward.                                                                                    |
| С | ENGTH    | Inches*                   | E12.8                       | 25-36                           | Distance from the coordinate system origin to the grid plane. Must be in the region specified by IRSTRT.                                               |
| 0 | ZSHIFT   | Inches                    | E12.8                       | 37-48                           | Distance grid plane is to be shifted in Z direction.                                                                                                   |
| 3 | GROUND   | Inches                    | E12.8                       | 49-60                           | Z coordinate of ground level. If Z coordinate of starting point of ray is < GROUND, ray is not tracked.                                                |
|   |          |                           |                             |                                 |                                                                                                                                                        |
|   |          |                           |                             |                                 | *Any unit of length may be used (inches, feet, meters) for target data, but the units must be consistent throughout the input.                         |

| _  | 1 2 3 4 5 | 5 6 7 8 9 10 11 12 13 14 15h | 6 17 10 ha 20 21 22 23 20 | 25 26 27 28 29 30 31 32 3 | 13 34 35 36 37 38 38 40 41 42 43 44 45 46 47 44 49 50 51 52 53 54 55 56 57 58 59 64 61 62 64 64 65 64 67 68 65 70 71 74 73 74 75 76 77 78 79 80                                                       |     |
|----|-----------|------------------------------|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ID | PARA      | UNITS                        | FORMAT                    | COLUMNS                   | DESCRIPTION                                                                                                                                                                                           |     |
| A  | XSHIFT    | Inches*                      | E12.8                     | 1-12                      | Distance grid plane is to be shifted in X direction.                                                                                                                                                  |     |
| 3  | YSHIFT    | Inches                       | E12.8                     | 13-24                     | Distance grid plane is to be shifted in Y direction.                                                                                                                                                  |     |
| С  | CELSIZ    | Various                      | E12.8                     | 25-36                     | Length and width of each cell in grid plane (see Figure 26). Units may be inches, feet, centimeters, or meters as specified by CELLUM (see Card 22A). If CELSIZ is blank, a 4-inch grid cell is used. |     |
|    |           |                              |                           |                           | *Any unit of length may be used (inches, feet, meters)                                                                                                                                                | 220 |

## DATA DECK SETUP

Figure 27 illustrates the data deck setup for normal operation. In this case, the target geometry is input with the data set. For production mode operation, the target geometry will have been processed previously and stored on magnetic tape. The data deck setup for production mode operation is illustrated in Figure 28.

Figures 29, 30 and 31 illustrate the data deck setups used for the optional routines available.



FIG. 27. Normal Mode Deck Set-Up



FIG. 28. Production Mode Deck Configuration



FIG. 29. Special Ray Tracing Deck Setup



FIG. 30. Volume Computation Deck Setup



FIG. 31. Area Computation Deck Setup

## SECTION III

## OUTPUT

The output of the MAGIC program consists of two major groups of data. The first group consists of the target description data. This data is printed out during Subroutines MAIN and GENI and is used to provide a record of the body input and region description data. The second group of data consists of the ray tracing output from each cell of the grid plane. This data is printed out to provide a printed record and/or written on tape during Subroutines GRID and TRACK for subsequent vulnerability analysis.

Figure 32 illustrates the major portion of the first group of output data. This data consists of the input of the various bodies and their dimensions as well as information on the number of times each of the eleven body types was used in the target description. Also included are the values of the major pointers in the MASTER-ASTER array after the body data input. The major pointer names are defined as follows:

- LBASE beginning location of the MASTER-ASTER array, and the beginning location of the RPP pointer data
- LRPPD beginning location of the RPP minimum/maximum values
- LABUT beginning location of the abutting RPP data
- LBODY beginning location of the body pointer data
- LBOD beginning location of the body dimension pointers
- LDATA next available storage location after the body dimension pointers. Used as an index in storing data in the MASTER-ASTER array
- LBOT beginning location of the body dimension data before the body dimension data is moved in the ASTER array
  - NDQ last storage location of the MASTER-ASTER array

THIS IS THE 11 APR 69 VERSION OF THE BRLESC MAGIC PROGRAM \*\*\*\*\*\*

BESIN EXECUTION

ENTER SENI

START READING SOLID DATA

SAMPLE INPUT

NO. OF RECTANGULAR PARALLELEPIPEDS 1
NO. OF SOLIDS 24
MAX NO. OF REGIONS 12

|     |     |      |   |              | RECT        | ANGULAR PARA | LLELEPIPED IN | PUT         |             |  |
|-----|-----|------|---|--------------|-------------|--------------|---------------|-------------|-------------|--|
| 1   |     |      |   | -10000.00000 | 10000.00000 | -10000.00000 | 10000.00000-  | 10000,00000 | 10000.00000 |  |
|     |     | 120  |   |              |             | DESCRIPTION  | OF SOLIDS     |             |             |  |
| 2   | 2   | POX  |   | 75,00000     | -36,00000   | 12,00000     | -150,00000    | 0.00000     | 0.00000     |  |
| _   | -   |      |   | 0.00000      | 72,00000    | 0.00000      | 0.00000       | 0.00000     | 36,00000    |  |
| 3   | 2   | BOX  |   | 74.00000     | -35.00000   | 13.00000     | -148,00000    | 0.00000     | 0.00000     |  |
| - 4 | 0.0 | 0.20 |   | 0.00000      | 70.00000    | 0.00000      | 0.00000       | 0.00000     | 34.00000    |  |
|     | 4   | ARB  |   | 75.00000     | -36.00000   | 12,00000     | 75,00000      | 36,00000    | 12,00000    |  |
|     |     |      |   | 75,00000     | 36,00000    | 48,00000     | 78,00000      | ~36.000aa   | 48.00000    |  |
|     |     |      |   | 100.00000    | 0,00000     | 12,00000     | 100,00000     | 0.00000     | 12.00000    |  |
|     |     |      |   | 100,00000    | 0.00000     | 12,00000     | 100,00000     | 0.00000     | 12,00000    |  |
|     |     | 144  |   | 1 2 3 4      | 6 4 3 5     | 6 1 2 8      | 6 2 3 7       | 7 4 1 5     | 7 4 1 5     |  |
| 0   | 5   | ARB  |   | -75.00000    | -36,00000   | 12,00000     | -75,00000     | 36,00000    | 12.00000    |  |
|     |     |      |   | -75,00000    | 36.00000    | 48,00000     | -75,00000     | -36,00000   | 48.00000    |  |
|     |     |      |   | -100.00000   | -24.00000   | 12,00000     | -100,00000    | 24,00000    | 12.00000    |  |
|     |     |      |   | -100,00000   | 24,00000    | 20.00000     | -100,00000    | -24,00000   | 20,00000    |  |
| -   | .2  |      |   | 1234         | 5 6 7 8     | 3 4 6 7      | 1 2 6 5       | 2376        | 1 4 8 5     |  |
| 6   | 6   | ELL  |   | 20.00000     | 0.00000     | 48,00000     | -20,00000     | 0.00000     | 48.00000    |  |
|     | -   |      | - | 50.00000     |             |              |               |             |             |  |
|     | 7   | CLL  | 7 | 0.00000      | 0.00000     | 48,00000     | 24,00000      | 0.00000     | 0.00000     |  |
|     |     |      |   | 14,00000     |             |              |               |             |             |  |
| -   | 7   | ELL  | 7 | -10,49359    | 0.00000     | 48,00000     | 19,49389      | 0.00000     | 40.00000    |  |
| 4   |     |      |   | 44.00000     |             |              |               |             |             |  |
| 8   | 5   | ACC  |   | 60.00000     | -36,00000   | 15.00000     | 0.00000       | 0.00000     | 0.00000     |  |
|     |     |      |   | 12.00000     |             |              |               |             |             |  |
| 4   | 9   | RCC  |   | 60.00000     | 36,00000    | 12,00000     | 0.00000       | -8.00000    | 0.00000     |  |
| 10  | 4 - |      |   | 15.00000     |             |              |               |             | 7.55        |  |
| 10  | 10  | RCC  |   | -60.00000    | -36,00000   | 12,00000     | 0.00000       | A.0000p     | 0.00000     |  |
| 00  |     |      |   | 12,00000     |             |              |               |             |             |  |
| 11  | 11  | PCC  |   | -60.0000n    | 36,00000    | 12.00000     | 0.00000       | -6.00000    | 0.00000     |  |
|     |     |      |   | 12.00000     |             |              |               |             |             |  |
| 12  | 15  | ROX  |   | -70.0000n    | -20.00000   | 15.00000     | 40,00000      | 0.00000     | 0.00000     |  |
|     |     | 21.  |   | 0.00000      | 40.00000    | 0.00000      | 0.00000       | 0.00000     | 30.00000    |  |
| 12  | 13  | RAK  |   | -70.00000    | -50.00000   | 45.00000     | 0.00000       | 0.00000     | -10.00000   |  |
|     |     |      |   | 0.00000      | 10.00000    | 0.00000      | 40,00000      | 0.00000     | 0.00000     |  |
| 14  | 14  | RAN  |   | -70.00000    | 20.00000    | 45.00000     | 0.00000       | 0.00000     | -10.00000   |  |
|     |     |      |   | 0.00000      | -10.00000   | 0.00000      | 40.00000      | 0.00000     | 0.00000     |  |
| 15  | 15  | ARE  |   | -7n.000nn    | -10.00000   | 45,00000     | -70,00000     | 10.00000    | 45.00000    |  |
|     |     |      |   | -7n.0000n    | 0.00000     | 35,00000     | -70.00000     | 0.00000     | 35.00000    |  |
|     |     |      |   | -20.00000    | -10.00000   | 45.00000     | -30,00000     | 10.00000    | 45,00000    |  |
|     |     |      |   | -30,00000    | 0.00000     | 35.00000     | -30,00000     | 0.00000     | 35.00000    |  |
|     |     |      |   | 3 1 2 4      | 7 6 5 8     | 1 3 7 5      | 2 3 7 6       | 1205        | 1 2 6 5     |  |
|     |     |      |   |              |             |              |               | 0.00        | 0.0.0.0     |  |

FIG. 32. Sample Problem Body Data

| 16 1  | 6 ARS       | NUMBER   | OF CURVES |                               | H=        | 14.       |           |
|-------|-------------|----------|-----------|-------------------------------|-----------|-----------|-----------|
|       | 2           | NUMBER   |           | PER CURVE                     | Na        | 5         |           |
|       |             | NUMBER   |           | A STATE OF THE REAL PROPERTY. |           |           |           |
|       |             |          | OF POINTS | 2211-1-21-4                   | MN=       | 20        |           |
|       |             |          |           |                               | 2H (M-1)= | 30        |           |
|       |             |          | STORAGE   |                               | =4NP+82=  | 202       | ALC HOUSE |
|       |             | -70,0000 | -20,0000  |                               | -70.0000  | -20.0000  | 15,0000   |
|       |             | -70,0000 | -20,0000  |                               | -70.0000  | -20,0000  | 15,0000   |
|       |             | -70.000n | -20,0000  | 15,0000                       |           |           |           |
|       |             | -70.0000 | -20,0000  | 15.0000                       | -70,0000  | -10,0000  | 15,0000   |
|       |             | -70,0000 | -10,0000  |                               | -70,0000  |           |           |
|       |             | -70,000n | -20,0000  |                               | -, 0,000  | -20,0000  | 35,0000   |
|       |             | 142      |           |                               | -27 Year  |           |           |
|       |             | -30,0000 | -20.0000  |                               | -30,0000  | -10,0000  | 15,0000   |
|       |             | -30,000n | -10,0000  |                               | -30,0000  | -20.0000  | 35,0000   |
|       |             | -30,0000 | -20.0000  | 15,0000                       |           |           |           |
|       |             | -30,0000 | -20,0000  | 15.0000                       | -30.0000  | -20,0000  | 15.0000   |
|       |             | -30.0000 | -20.0000  |                               | -30,0000  | -20,0000  |           |
|       |             | -30,0000 | -20,0000  |                               | -00,0000  | -20.0000  | 15,0000   |
|       |             |          |           | LES DESCRIBED                 |           |           |           |
|       |             | NUMBER   |           | GENERATE TRIAN                | Uni Ec    | 28        |           |
|       |             | MONBER   | OF HUN-DE | GENERALE INTA                 | MELES     | 12        |           |
| 17 17 | 7 ARS       | NUMBER   | DF CURVES |                               | He        | 5         |           |
|       |             | NUMBER   | OF POINTS | PER CURVE                     | Nm        | 4         |           |
|       |             | NUMBER   | OF POINTS | IN                            | M11/m     | 20        |           |
|       |             | NUMBER   | OF POINTS | STURED NP=2                   | 2N(M-1)=  | 32        |           |
|       |             |          | STORAGE   |                               | 4NP+82=   | 210       |           |
|       |             | -70.000n | 20,0000   | 15,0000                       | -70,0000  | 20.0000   | 15.0000   |
|       |             | -30,0000 | 20.0000   | 15,0000                       | -30,0000  | 20,0000   | 15.0000   |
|       |             | -70 2000 |           |                               |           |           |           |
|       |             | -70.0000 | 20,0000   | 15.0000                       | -70.0000  | 10.0000   | 15,0000   |
|       |             | -30.0000 | 10,0000   | 15,0000                       | -30,0000  | 20,0000   | 15,0000   |
|       |             | -70.0000 | 20,0000   | 15.0000                       | -70.0000  | 10.0000   | 25.0000   |
|       |             | -30,0000 | 10.0000   | 25,0000                       | -30.0000  | 20.0000   | 15.0000   |
|       |             |          |           |                               |           | 2.1,000.1 | 10,0000   |
|       |             | -70,0000 | 20,0000   | 15,0000                       | -70,0000  | 20,0000   | 35,0000   |
|       |             | -30,0000 | 20.0000   | 35,0000                       | ~30.0000  | 20.0000   | 15,0000   |
|       |             | -70.0000 | 20.0400   | 15.0000                       | -70.1000  | 20,4000   | 15 0000   |
|       |             | -30.conn | 20.0000   | 15.0000                       | -30,0000  |           | 15,0000   |
|       |             | HUMBET   |           | ES DESCRIBED                  | -50,0000  | 20,0000   | 15,0000   |
|       |             |          |           | ENERATE TRIAN                 | GLES      | 20        |           |
|       |             |          |           |                               |           | 75        |           |
| 16 18 | FEL         | 0.00000  | 0.00000   | 24.00000                      | D.Goona   | 0.00000   | 28.00000  |
| 10 10 | 200         | 7.00000  | 7.500.0   | 0.00000                       | 5.00000   | 0.00000   | 0.00000   |
| 19 19 | 7.10.10     | 0.00000  | 0.00000   | 52.00000                      | 5.00000   |           |           |
| 50 50 | TEC         | 0.00000  | -7.50000  | 49.00000                      | 20.00000  | 6.00000   | -12.00000 |
|       |             | 0.00000  | 0.00000   | 3,00000                       | 0.00000   | 2,00000   | 0.00000   |
| 65/20 | -314        | 2.00000  |           |                               | 171.017   |           |           |
| 50 50 | TEC         | 0.070.0  | -7.50000  | 49.00000                      | 20.00000  | 0.00000   | -12.00000 |
|       |             | 1.00000  | 0.00000   | 0,00000                       | 0.00000   | 0,00000   | 1.00000   |
|       |             | 3.00000  | 2.00000   | 2,00000                       |           | -,00000   |           |
| 21 21 | TEC         | 0.00000  | 7.50000   | 49,00000                      | 20.00000  | 0.00000   | -12 00000 |
|       | 1 1 1 1 1 1 | 0.00000  | 0.00000   | 3,00000                       | 0.00000   |           | -12.00000 |
|       |             | 2.00000  |           | 2.00000                       | 0.00000   | 2.00000   | 0.00000   |
| 21 21 | TEC         | 0.00000  | 7.50000   | 49.00000                      | 20.00000  | 0.00000   | -12 00000 |
| 100   |             | 1.00000  | 0.00000   | 0.00000                       |           | 0.00000   | -12.00000 |
|       |             | 3.00000  |           |                               | 0,00000   | 0.00000   | 1.00000   |
|       |             | 3.0000   | 2.00000   | 2.00000                       |           |           |           |

FIG. 32. Sample Problem Body Data (Continued)

| 22 | 22 | TRC | -2.00000 | -4.50000 | 27.00000 | 32,00000 | 0.00000 | -12.00000 |
|----|----|-----|----------|----------|----------|----------|---------|-----------|
|    |    |     | 3.00000  | 2,00000  |          |          |         |           |
| 23 | 23 | TRC | -2,00000 | 4,50000  | 27.00000 | 32,00000 | 0.00000 | -15.00000 |
|    |    |     | 3.00000  | 5.00000  |          |          |         |           |
| 24 | 24 | TOR | 21.50000 | 0.00000  | 37.00000 | 1,00000  | 0.00000 | 0.00000   |
|    |    |     | 8,00000  | 1.00000  |          |          |         |           |
| 24 | 24 | TOR | 21,50000 | 0.00000  | 37,00000 | 1.00000  | 0,00000 | 0.00000   |
|    |    |     | 8,00000  | 1.00000  |          |          |         |           |
| 25 | 25 | ARB | 21.50000 | -6.00000 | 33,60000 | 21,50000 | 5,80000 | 33.50000  |
|    |    |     | 21,50000 | 0.00000  | 44.00000 | 40,00000 | 0.00000 | 37.00000  |
|    |    |     | 21,50000 | -6,00000 | 33,50000 | 21.50000 | 6.00000 | 33,50000  |
|    |    |     | 21.50000 | 0,00000  | 44,00000 | 40,00000 | 0.00000 | 37.00000  |
|    |    |     | 3 1 2 7  | 2146     | 4 3 2 8  | 1 3 4 5  | 3 1 2 7 | 3 1 2 7   |

FINISH READING SOLID DATA

80X SPH RCC REC TRC ELL RAW ARB TEC TOR ARS 3 1 4 1 2 2 2 4 2 1 2 LBASE LRPPD LABUT LBODY LBOD LDATA LBOT NDQ 1 13 15 15 90 158 9389 10000

FIG. 32. Sample Problem Body Data (Concluded)

Figure 33 illustrates the printed output during the region storage phase of Subroutine GENI. This data consists of a record of the region data description input, as well as information on preparation and checking of the region data. Also included are the values of major pointers used in the region description storage and pointers to reserved storage areas. The major pointer names are defined as follows:

- LREGD beginning location of the region pointer data
- LREGL beginning location of the operator/body number data for each region
- LENLV beginning location of the region enter/leave tables
  - LRIN beginning location of the storage section reserved for entry intersect distance data
  - LROT beginning location of the storage section reserved for exit intersect distance data
  - LIO beginning location of the storage section reserved for Subroutine G1 working storage
- LEGEOM next available storage location at the end of the target geometry

Figure 34 illustrates the printed output during the region identification storage phase of the MAIN program. This data consists of a printed record of the component code or space code, and description, of each region of the target geometry. Also included is the value of pointer LIRFO, the beginning location of the region identification data in the MASTER array.

Figure 35 illustrates the first page of the ray tracing output from each cell of the grid plane for the first aspect angle computed. This data consists of several major items of information as follows:

- The number of aspect angles to be considered are printed out from the MAIN program.
- (2) Information defining the grid plane and identifying the present attack aspect angle is printed out during Subroutine GRID with the following data:
  - NX number of horizontal cells in grid plane
  - NY number of vertical cells in grid plane

|     |     |      | 5   | 0.23 |    | REG  | ION | COMBIN | ATION | DATA |     |       |     |      |     |      |     |      |
|-----|-----|------|-----|------|----|------|-----|--------|-------|------|-----|-------|-----|------|-----|------|-----|------|
|     | 244 | 17   |     | -2)  | (  | -41  |     | -51    | 1     | =61  |     | -81   |     | -01  |     |      | 0   |      |
| 2   | COR | 21   | (   | -31  |    | -7)  | (   | -81    |       | -9)  |     | 20.00 |     | -9)  | 1   | -10) | 1   | -111 |
| 3   | 1   | 61   | 1   | -71  |    | -2)  |     |        |       |      |     | -10)  |     | -111 | (OR | 4)   | IOR | 51   |
| 4   |     | 81   | ,   | 0)   |    |      | 2.1 | 0.3    |       | 0)   |     | 0)    |     | 0.)  |     | 0)   | (   | 01   |
| - 5 | ,   | 9)   |     |      |    | 0)   |     | 0)     |       | 0)   | 1   | 0)    |     | 0.1  |     | 0)   | 1   | 01   |
| 6   |     |      |     | 0)   | (  | 0)   | 1   | 0.1    | (     | 0)   | (   | 01    | 1   | 01   | 1   | 0)   | ,   | 01   |
|     |     | 10)  | (   | 01   | (  | 0)   | (   | 01     | 1     | 01   | i   | 0)    | S   |      | 7   | -    | 1   | 01   |
| 1   |     | 11)  |     | 01   |    | 0)   |     | 01     |       | 0)   | 1   |       |     | 0)   |     | 0)   | 1   | 07   |
| 8   | COR | 3)   | 1   | -181 | 1  | -19) |     | -201   |       |      |     | 0)    | (   | 0.3  | (   | 01   | 1   | 0)   |
|     | 1   | -8)  | 1   | -91  |    |      | :   |        |       | -21) | 1   | -22)  | (   | -231 | (   | -241 |     | -25) |
|     |     | -21) |     |      | 5  | -10) |     | -111   |       | -121 | IOR | 7)    | 1   | -181 | (   | -191 |     | -201 |
| 9   | 7   |      |     | -24) | 9  | -251 | (OR | 13)    | COR   | 14)  | IOR | 18)   | COR | 16)  | ine | 171  | ;   |      |
|     |     | 3)   | (   | 121  | 1  | -131 | (   | -14)   |       | -151 | 1   | -16)  | 1   |      |     |      |     | 0)   |
| 10  | (OR | 18)  | (OR | 191  | OR | 201  | COR |        | COR   | 22)  | inn |       |     | -17) |     | 01   | (   | 0)   |
| 11  | 1   | 3)   | 1   | 241  | 1  | -251 |     |        | 101   |      | FOR | 23)   |     | n)   | (   | 0.1  | (   | 0)   |
| 12  | 1   | 3)   | 1   | 251  |    |      |     | 0)     |       | 0)   | (   | 0)    | 6   | 0)   | 1   | 0)   | 1   | 0.1  |
|     |     | 0,   |     | 201  | 4  | 01   | 4   | 0)     |       | 0)   | 1   | 0.1   | (   | 0)   | 4   | 0.1  |     | 0)   |

FINISH READING REGION DATA

FINISH A PASS OF ENTER LEAVE TABLE

FINISH A PASS OF ENTER LEAVE TABLE 2

TOTAL ROOM FOR GEOMETRY DATA LEBEON® 1025

TREGD LREGL LENLY LRIN LROT LID LEGEOM 770 782 851 950 975 1000 1025

LEAVING GENT

FIG. 33. Sample Problem Region Table

| REGION<br>REGION | TYPE DA | TA FOLL | TYPE | DESCRIPTION 9978       |
|------------------|---------|---------|------|------------------------|
| 1                |         | 0       | 1    | OUTSIDE AIR            |
| 2                | 1       | .00     | 0    | 8004                   |
| 3                | 1       | 01      | 0    | BUBBLE                 |
| 4                |         | 51      | 0    | WHEEL RIGHT FRONT      |
| 5                |         | 52      | 0    | WHEEL LEFT FRONT       |
|                  |         | 53      | . 6  | WHEEL RIGHT HEAR       |
| 6 7              |         | 54      | 0    | WHEEL LEFT REAR        |
|                  |         | 0       | 0    | AIR INSIDE             |
| 8 9              | 2       | 0.0     | 0    | ENGINE                 |
| 10               |         | 500     | 0    | MAN                    |
| 11               | 4       | 0.0     | 0    | STEERING WHEEL         |
| 1.2              | 4       | 01      | 0    | STEERING SHAFT         |
| 7.6              |         | 14.4    | •    | AND THE REAL PROPERTY. |

FIG. 34. Sample Problem Region Identification

NUM OF ASPECT ANGLES FOR GRID IS 2 NX 37 NY 71 IRSTART TENC 1 NSTART 1 NEND 2627 CELL SIZE 2.00 DATUM LINE AT Z= 0.000 WITH RESPECT TO THE ORIGIN XSHIFT IS AT X= 0.000 WITH RESPECT TO THE ORIGIN 0.000 WITH RESPECT TO THE ORIGIN AZIMUTH 0.00000 ELEVATION 0.00000 BACK OFF DIST 200.00000 OPTION SET TO COMPUTE RANDOM POINT IN CELL 4.0 62.0 30 10.50 -10.50 0 1 0 1 2 2 31 3.700 61.100 1 4.89 0.99 74.5 2 11.22 101 6.89 1.00 82.0 9 0.00 2 31 1 98 1.18 -1.18 0 1 0 0 1 1 31 1.00 88.4 9 0.00 0 0.00 0.0 52.0 98 2,900 0.00 0.0 0 1 31 0 50 12.18 -12.18 0 1 0 1 2 0 31 0.100 0 0.98 71.5 2 16.93 101 3.71 0.99 77.6 9 62.0 50 0.0 3.71 0 31 0.59 75.7 2 7.98 101 5.79 1.00 84.4 9 0.00 62.0 63 5,79 101 -1 31 0 62.0 83 5.05 -5.06 0 1 0 0 1 -3 31 -5.300 61.700 10.12 1.00 82.9 9 0.00 0.00 0.00 0.00 0.0 +3 31 60.0 50 13.39 -13.39 0 1 0 1 2 3 30 6,100 55,100 17 0.98 69.2 2 20,45 101 5,17 0.99 74.6 9 6.00 5,0 60.1 1 3,17 3 30 2 0.98 69.3 2 20,31 101 3.19 0.99 74.6 9 4.0 60, 60.0 6 2 30 24 15.01 -15.01 0 1 0 1 2 1 30 1.500 59.900 0.97 65.7 2 24.76 101 2.63 0.98 70.6 9 0.00 2.0 60 60.0 24 1 30 2 0 52 16.05 -16.05 0 1 0 1 2 0 30 0.100 59.500 0.97 03.3 2 27.37 101 2.36 0.98 68.0 9 0.00 60.0 52 2.36 0 30 2.33 0.97 63.0 2 27.73 101 2.33 0.98 67.6 9 -1 30 -4,0 60.0 16 11.97 -11.97 ft u 1 2 -2 30 -4.700 101 3.82 0.98 71.9 2 16.31 101 3.82 0.99 78.1 9 60.300 -2 30 -6.0 60.0 85 11.84 -11.84 0 1 0 1 2 -3 30 -5.300 101 3.90 0.98 72.1 2 15.90 101 3.90 0.99 78.4 9 60,100 -3 30 2 0.00 0.00 0 92 6.65 -6.65 0 1 0 0 1 5 29 0.99 80.6 9 0.00 0 0.00 0.0 58.0 92 101 13.31 0.0 0 5 24 0 58.0 1 15.64 -15.64 0 1 0 1 2 4 24 7.100 2.46 0.97 64.3 2 26.36 101 2.46 0.98 69.0 9 4 24 2 0.97 59.2 2 31.22 101 2.02 0.5 6.0 56.0 20 0,97 63,5 9 0,nn 2.02 3 24 2 0 44 17.62 -17.62 0 1 0 1 2 2 29 3.900 57.900 0.97 59.2 2 31,19 101 2.02 0.97 53.3 9 0.00 56.0 44 2.02 2 24

FIG. 35. First Page Cell Data Output, Case 1, Sample Problem

IRSTART region number of attack plane

IENC region number enclosing target and attack plane

NSTART starting cell number for ray tracing (usually first cell)

NEND last cell number for ray tracing (usually last cell)

CELL SIZE horizontal and vertical dimensions of cells

- (3) Information defining the ground level with respect to the origin, and the amount the origin and center of the grid plane is to be shifted in the x, y, and z direction are printed out during Subroutine GRID
- (4) Information defining the aspect angle (azimuth and elevation) and the distance between the grid plane at the origin of the target and the attack plane from which the rays originate are printed out during Subroutine GRID.
- (5) The ray intersect data for each ray and the resulting component intersection data is printed out and recorded on magnetic tape during Subroutine TRACK. This is the primary data from the MAGIC program and is used by subsequent computer programs for vulnerability studies. There are two groups of data written out for each ray. The first group composes the first line of data and consists of grid cell and general ray data defined as follows:



HREF horizontal distance from center of grid plane to center of specific grid cell

VREF vertical distance from center of grid plane to center of specific grid cell

IVIH two-digit random number

IVIH two-digit random number

- D1 distance from first intersect of target to center grid plane (positive if intersect occurs on front side of plane, negative if intersect occurs on back side of plane)
- D2 distance from last intersect of target to center grid plane (negative if intersect occurs on back side of plane, positive if intersect occurs on front side of plane)

MSKRT flag for indicating skirt material

MTARG flag for indicating target

MARMR flag for indicating armor

MVOL flag for indicating interior volume

KHIT number of components hit along ray

- IH horizontal grid cell number from center of grid plane
- IV vertical grid cell number from center of grid plane
- H horizontal distance from center of grid plane to random point in grid cell
- V vertical distance from center of grid plane to random point in grid cell

The next line(s) consists of the ray intersection data (two components per line) and composes the second group of data defined as follows:



NIR region identification (component code)

SLOS line-of-sight distance through region following intersect

- SN normal distance through region
- ANGLE angle between normal and ray at intersect
- NTYPE space code of following region
  - IH horizontal grid cell number from center of grid plane
  - IV vertical grid cell number from center of grid plane
  - N consecutive number of component intersected by ray
- (6) At the end of the grid cell data, the consecutive number of the aspect angle completed, the number of Subroutine G1 errors encountered, and the number zero component code errors are printed out during the MAIN program before processing the next aspect angle.

Figure 36 illustrates the first page of the ray tracing output for the second aspect angle computed.

```
END OF CASE
NUMBER OF G1 ERRORS ENCOUNTERED
NUMBER OF 0 ITEMS ENCOUNTERED
                                        0
NX 51
              NY
                    37
                             IRSTART
                                                 IENC I NSTART 1 NEND 1867
                                                                                                         CELL SIZE
DATUM LINE AT Z=
                          0.000 WITH RESPECT TO THE ORIGIN
GROUND IS AT Z=
XSHIFT IS AT X=
YSHIFT IS AT Y=
                    -500,000 HITH RESPECT TO THE ORIGIN
0.000 HITH RESPECT TO THE ORIGIN
0.000 HITH RESPECT TO THE ORIGIN
AZIMUTH
             90,00000
                             ELEVATION
                                           0.00000
                                                         BACK OFF DIST 200.00000
OPTION SET TO CHOOSE CENTER OF CELL
               0 0 5,40 -5,40 0 1 0 1 2 3 15 12,000 60,000 0,98 67.1 2 3,46 101 3,67 0,98 82.2 9 0.00
 101 3,67
                              -7.61 0 1 0 1 2
2 10.99 101 2.12
                        7.61
                                                      2 15
                                                                          60.000
 101 2,12
               0.99 58.3
                                                        0.99
         60.0 0
                              -8.67 0 1 0 1 2 1 15
2 13,65 101 1.65 1.6
                        8.67
                                                                 4.000
       1,85
                1.00
                       54.3
                                                        1,00 60,5 9
          60.0 0
                               -9.00 0 1 0 1 2 0 15
2 14,42 101 1.79 1.1
                        9.00
                                                                 0.000
               1.00 53.1
                                                        1,00 59,0 9
                              -8.67 0 1 0 1 2 -1 15 -4.000
2 13,65 101 1.85 1.00 60.5 9
          60.0 0
                        8.67
       1.65
               1.00
                       54.3
                                -7.61 0 1 0 1 2 -2 15 -8.000 2 10.99 101 2.12 0.99 65.9 9
         60,0 0
               0.99 58.3
                              2 10,99 101
                                                                           0.00
          60.0 0
                                -5.40 0 1 0 1 2 -3 15 -12.000
2 3.46 101 3.67 0.98 82.2 9
               0.98 67.1 2
      3.67
                             9 0.00 0 1
          56.0 0
               0.97 69.0
                                              0 1 5 14 20,000 56,000
                                   0.00 0
                                                               0.0 0
                                                                          0,00
                             -8,30 0 1 0 1 2 4 14 16,000
2 13,40 101 1,60 0,97 55,3 9
          56.0 0
                       8.30
               0.97 49.9
 12.0 56.0 0 10.45 -10.45 0 1 0 1 2 3 14 12.000 101 1.34 0.98 41.0 2 18.22 101 1.34 0.98 44.6 9
                                                                            0.00
         56.0 0
              0 0 11.75
                             ~11.75 0 1 0 1 2 2 14 6.000
2 21.00 101 1.25 0.99 38.8 9
                                                                           0.00
              1.00 33.1 2 22.50 101 1.21 1.00 35.8 9
         56.0 0
             0 0 12,69 -12,69 0 1 0 1 3 0 14
1.00 32,2 2 8,49 3r0 6.00 5.00
1.00 34.8 9 0,00 0 0.00 0.00
         56,0 0
                                                                0.000
       1,20
                                                                         56,000
101 1.20
                                                                 0.0 0
                                                                                    0 14
-4.0 56.0 0 12.46 -12.46 0 1 0 1 2 -1 14 -4.000 56.000 101 1.21 1.00 35.8 9 0.00
                                                                           0.00
```

FIG. 36. First Page Cell Data, Case 2, Sample Problem

### SECTION IV

#### SAMPLE PROBLEM

### PROBLEM DESCRIPTION

A simplified target representing a vehicle with a driver is used in the sample problem. At least one of each body type incorporated in the MAGIC simulation is used in the target description. Figure 37 shows the sample target and body types used in the region descriptions. Figure 38 contains a plotter description of the exterior surfaces and Figure 39 shows the interior surfaces.

### SAMPLE PROBLEM INPUT

Data checksheets and table forms are used to illustrate the input parameters for the sample problem. A listing of the complete input data set is shown in Figure 40.

25 ARB -

REGION 12

REGION 11

- B RCC

REGION 4

REGION 5

- 22 TRC - 20 TEC

\_ 23 TRC

21 TEC



10 RCC -

REGION 6

REGION 7

FIG. 37. Sample Target



SAMPLE INPUT AZIMUTH 45.0 ELEVATION 30.0 SCALE IS 25.00 IN. = 1.0 IN.

FIG. 38. Sample Target Exterior Surfaces



SAMPLE INPUT AZIMUTH 45.0 ELEVATION 30.0 SCALE 1S 25.00 IN. = 1.0 IN,

FIG. 39. Sample Target Interior Surfaces

### DATA CHECKSHEET

| CARD ID | PG | PARA   | VALUE   | CARD ID | PG  | PARA     | VALUE |
|---------|----|--------|---------|---------|-----|----------|-------|
| 1       | 20 | IRDTP4 | (blank) | 16      |     | USE      |       |
|         | 20 | IWRTP4 | (blank) |         |     | REGION   |       |
|         | 20 | ITESTG | (blank) |         |     | TABLE    |       |
|         | 20 | IRAYSK | (blank) |         |     | ALL MAIN |       |
|         | 20 | ICARDI | (blank) | 17A     | 65  | NRAYS    |       |
|         | 21 | IENTLV | (blank) |         | 65  | NGIERR   |       |
|         | 21 | IVOLUM | (blank) | 1       |     |          |       |
| 2       | 22 | IT(I)  | (Title) | 17B     | 66  | XB(1)    | -     |
|         |    |        | "Sample | 1       | 66  | XB(2)    |       |
|         |    |        | Input"  |         | 66  | XB(3)    |       |
|         |    |        |         | 1       | 66  | IRSTRT   |       |
|         |    |        |         | 17C     | 67  | XBF(1)   |       |
| 3       | 23 | NRPP   | 1       |         | 67  | XBF(2)   |       |
| 3       | 23 | NTRIP  | (blank) |         | 67  | XBF(3)   |       |
|         | 23 | NSCAL  | (blank) |         | 67  | IRFIN    |       |
|         | 23 | NBODY  | 24      |         |     |          |       |
|         | 23 | NRMAX  | 12      | 17B     | 66  | XB(1)    |       |
|         | 23 | IPRIN  | (blank) |         | 66  | XB(2)    |       |
|         | 23 | IRCHEK | (blank) |         | 66  | XB(3)    |       |
|         |    |        |         |         | 66  | IRSTRT   |       |
| 4       | 24 | X(1)   | -10000. |         |     |          |       |
|         | 24 | X(2)   | 10000.  | 17C     | 67  | XBF(1)   |       |
|         | 24 | X(3)   | -10000. |         | 67  | XBF(2)   |       |
|         | 24 | X(4)   | 10000.  |         | 67  | XBF(3)   |       |
|         | 24 | X(5)   | -10000. |         | 67  | IRFIN    |       |
|         | 24 | X(6)   | 10000.  |         |     |          |       |
| 5-15    |    | USE    |         | 1       |     |          |       |
|         |    | BODY   |         | 4       |     |          |       |
|         |    | TABLE  |         |         | 1 5 |          |       |

DATA CHECKSHEET

| CARD ID | PG | PARA   | VALUE   | CARD ID     | PG           | PARA | VALUE |
|---------|----|--------|---------|-------------|--------------|------|-------|
| 18A     | 68 | IR     |         |             |              |      |       |
|         | 68 | NG1ERR |         |             |              |      |       |
| 18B     | 69 | XV(1)  |         | -           |              |      | +     |
|         | 69 | XV(2)  |         | 1           | 1            |      | +     |
|         | 69 | XV(3)  |         | 1           |              |      |       |
| 18C     | 70 | XT(1)  |         | $\parallel$ | $\mathbf{H}$ |      |       |
|         | 70 | XT(2)  | 222     | 1           |              |      |       |
|         | 70 | XT(3)  |         | 1           |              |      |       |
| 18D     | 71 | XO(1)  |         | +           |              |      |       |
|         | 71 | XO(2)  |         | 1           |              |      |       |
|         | 71 | XO(3)  |         |             |              |      |       |
| 18E     | 72 | XA(1)  |         | -           |              |      | -     |
|         | 72 | XA(2)  |         | 1           |              | 1    |       |
|         | 72 | XA(3)  |         | 1           |              |      |       |
| 18F     | 73 | DOD    |         | -           |              |      |       |
|         | 73 | DT     |         |             |              |      |       |
| 19      | Н  | USE    |         | -           |              |      |       |
|         |    | REGION |         |             |              |      |       |
|         |    | IDENT  |         |             |              |      |       |
|         |    | TABLE  |         | -           |              |      |       |
| 20      | 77 | NOAA   | 2       |             |              |      |       |
|         | 77 | IWOT   | (blank) |             |              |      |       |
|         | 77 | ITAPE8 | (blank) |             |              |      |       |
|         | 77 | NAREA  | (blank) | 11          |              |      |       |

DATA CHECKSHEET Grid Cell Description. Enter data for each attack angle desired.

| PG  | PARA                                                                       | VALUE                                                                                                                           | CARD ID                                                                                                                                                                                                                                                                                                                                                                                                                            | PG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 78  | NX                                                                         | 37                                                                                                                              | 21A                                                                                                                                                                                                                                                                                                                                                                                                                                | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 78  | NY                                                                         | 71                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 78  | IRSTRT                                                                     | 1                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IRSTRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 78  | IENC                                                                       | 1                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 78  | NG1ERR                                                                     | (blank)                                                                                                                         | ]                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NG1ERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 78  | NSTART                                                                     | (blank)                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NSTART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 78  | NEND                                                                       | (blank)                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 78  | ICENTER                                                                    | (blank)                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 79  | A                                                                          | 0.                                                                                                                              | 21B                                                                                                                                                                                                                                                                                                                                                                                                                                | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 79  | Е                                                                          | 0.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 79  | ENGTH                                                                      | 200.                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 79  | ZSHIFT                                                                     | 0.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZSHIFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 79  | GROUND                                                                     | -500.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80  | XSHIFT                                                                     | 0.                                                                                                                              | 21C                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XSHIFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80  | YSHIFT                                                                     | 0.                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YSHIFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80. | CELSIZ                                                                     | 2.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CELSIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 78<br>78<br>78<br>78<br>78<br>78<br>78<br>79<br>79<br>79<br>79<br>79<br>79 | 78 NX 78 NY 78 IRSTRT 78 IENC 78 NG1ERR 78 NSTART 78 NEND 78 ICENTER 79 A 79 E 79 ENGTH 79 ZSHIFT 79 GROUND 80 XSHIFT 80 YSHIFT | 78       NX       37         78       NY       71         78       IRSTRT       1         78       IENC       1         78       NG1ERR       (blank)         78       NSTART       (blank)         78       ICENTER       (blank)         79       A       0.         79       E       0.         79       ENGTH       200.         79       GROUND       -500.         80       XSHIFT       0.         80       YSHIFT       0. | 78       NX       37       21A         78       NY       71       71         78       IRSTRT       1       1         78       IENC       1       1         78       NG1ERR       (blank)       (blank)         78       NEND       (blank)         78       ICENTER       (blank)         79       A       0.       21B         79       ENGTH       200.         79       GROUND       -500.         80       XSHIFT       0.       21C         80       YSHIFT       0.       21C | 78       NX       37       21A       78         78       NY       71       78         78       IRSTRT       1       78         78       IENC       1       78         78       NG1ERR       (blank)       78         78       NSTART       (blank)       78         78       ICENTER       (blank)       78         79       A       0.       21B       79         79       ENGTH       200.       79         79       ENGTH       200.       79         79       GROUND       -500.       79         80       XSHIFT       0.       21C       80         80       YSHIFT       0.       80 | 78       NX       37       21A       78       NX         78       NY       71       78       NY         78       IRSTRT       1       78       IRSTRT         78       IENC       1       78       IENC         78       NG1ERR       (blank)       78       NG1ERR         78       NSTART       (blank)       78       NSTART         78       NEND       78       ICENTER         79       A       0.       21B       79       A         79       E       0.       79       ENGTH         79       ZSHIFT       0.       79       ENGTH         79       GROUND       -500.       79       GROUND         80       XSHIFT       0.       21C       80       XSHIFT         80       YSHIFT       0.       80       YSHIFT |

DATA CHECKSHEET Area Input. Enter data for each attack angle desired.

| CARD ID | PG | PARA   | VALUE | CARD ID | PG | PARA   | VALUE |
|---------|----|--------|-------|---------|----|--------|-------|
| 22A     | 82 | NX     |       | 22A     | 82 | NX     |       |
|         | 82 | NY     |       |         | 82 | NY     |       |
|         | 82 | IRSTRT |       | ]       | 82 | IRSTRT |       |
|         | 82 | IENC   |       | 1       | 82 | IENC   | 2     |
|         | 82 | NG1ERR |       | 1       | 82 | NG1ERR |       |
|         | 82 | NSTART |       | 1       | 82 | NSTART |       |
|         | 82 | NEND   |       | 1       | 82 | NEND   |       |
|         | 82 | CELLUN |       | 1       | 82 | CEJLUN |       |
|         | 82 | AREAUN |       |         | 82 | AREAUN |       |
| 22B     | 83 | A      |       | 22B     | 83 |        |       |
|         | 83 | E      |       | 1 228   | 83 | E      |       |
|         | 83 | ENGTH  |       | 1       | 83 | ENGTH  |       |
|         | 83 | ZSHIFT |       | 1       | 83 | ZSHIFT |       |
|         | 83 | GROUND |       |         | 83 | GROUND |       |
| 22C     | 84 | XSHIFT |       | 22C     | 84 | VOUTTO |       |
|         | 84 | YSHIFT |       | - 220   | 84 | XSHIFT |       |
|         | 84 | CELSIZ | 1 222 | 1       | 84 | YSHIFT |       |
|         |    | OHIDIZ |       |         | 04 | CELSIZ |       |
|         |    |        |       |         |    |        |       |
|         |    |        |       | 1       |    |        | +     |
|         |    |        |       |         |    |        |       |
|         |    |        |       | -       | -  |        |       |
|         |    |        |       |         |    |        |       |
|         |    |        |       | -       |    |        |       |
|         |    |        |       |         |    |        |       |
|         | H  |        |       | ]       |    |        |       |
|         |    |        |       |         |    |        |       |

USED FOR: SAMPLE PROBLEM

Date: Aug. 1970

| SEL  | FOR       | SAM        | FLE PROBLEM                   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|-----------|------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ВС   | DDY       |            |                               | SC                            | ALARS AND VECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ORS OF THE BODY               | Y                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1)  | TYPE      |            | x                             | Y                             | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                             | Y                             | Z                             | IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 3 4, 5, 6 | 7, 8, 9 10 | 11 12 13 14 15 16 17 18 19 20 | 21 22 23 24 25 26 27 28 29 30 | 31 32 33 34 35 36 37 38 39 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41 42 43 44 45 46 47 48 49 50 | 51 52 53 54 55 56 57 58 59 60 | 61 62 63 64 65 66 67 68 69 70 | 71,72,73,74,75,76,77,76,79,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | ROX       |            |                               | -36:11111                     | The state of the s | -150                          |                               |                               | BORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 41   |           |            | Oct 11111                     | 72                            | 0-111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.111111                      | 00111111                      | 34.11111                      | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3, 1 | BOX       | 111        | 7401111                       | -35:                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.48                         | A. L.L.                       | 0:111111                      | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 311  |           |            | Qel IIIII                     | 7000                          | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Olel I I I I I                | 0                             | 3/10/11/11                    | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1    | ARB       |            | 75011111                      | -36011111                     | 120000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.                           | 36                            | 1/2011111                     | 58947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4    | 1         |            | 75011111                      | 360000                        | 1/8011111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75                            | -36                           | 1/81011111                    | THE PERSON NAMED IN COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.   | 1.        | 111        | 1000                          | 00111111                      | 12011111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000000                       | Ou LLILL                      | 121-11111                     | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.   | 1.        | 1,,,       | 1/100-1111                    | Polletite                     | 120000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000000                       | a                             | 1201111                       | IIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.   | 1         | 111        | 1234 6435                     | 6/28 6237                     | 7415 7415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$                            | minne                         |                               | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5    | ARB       |            | -75011111                     | -36011111                     | 1/2/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -75011111                     | 36                            | 1 Dien 1111                   | REAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 51   | 111       | 1111       | -175011111                    | 36                            | 14.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -75-1111                      | -3600                         | 1/18/21 1111                  | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5    | 1         | In         | -100e1111                     | -24                           | 1200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000000                       | 21/10-1-1-1-1                 | 12011111                      | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 51   | 1.        | 1111       | -1000                         | 24                            | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -100101111                    | -2401111                      | 201011111                     | THE STATE OF THE S |
| 51   | 411       | 1111       | 1234 567                      | 3487 1265                     | 23.76 1.4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>\$</b> 11111111            |                               |                               | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6    | ELK       | -          | 20.11111                      | 0                             | 4.810.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20                           | Qui                           | 19/8/-11111                   | BUBBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6    | 1         | 1111       | 500                           | 11111111                      | سسسبب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - munu                        | 111111111                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7    | EL        | 4          | 010111111                     | 0.11.111                      | 1418111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.                           | Our                           | 10-11-11                      | (1/1010)11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7    | 444       | 400        | 114011111                     | Juliani                       | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 11111111                      |                               | 744504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8    | ec        | 9111       | -60-11111                     | -136-1111                     | 1 die 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                             | - Borring                     | Piel                          | WHEEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8.   | 1111      | -          | 1201111                       | HILLIAN                       | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                             | سسستن                         | Turning.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9    | , RC      | CL         | 600:1111                      | 136.                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O comment                     | F8                            | 10.11111                      | WHEEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Date: Aug. 1970

|            |        |             |                                         |                               |                                        |                                |                              |                               | Date: Aug. 19 |
|------------|--------|-------------|-----------------------------------------|-------------------------------|----------------------------------------|--------------------------------|------------------------------|-------------------------------|---------------|
| В          | YQC    | 1           |                                         | SC                            | CALARS AND VECT                        | ORS OF THE BOD                 | Y                            |                               |               |
| (1)<br>NO. | TYPE   |             | x                                       | Y                             | z                                      | x                              | Y                            | Z                             | IDENTIFICATIO |
| . 3        | 4,5,6  | 7, 8, 9, 10 | 0 11 12 13 14 15 16 17 18 19 20         | 21 22 23 24 25 26 27 28 29 30 | 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 | 1 41 42 43 44 45 46 47 48 49 5 | 5) 52 53 54 55 56 57 58 59 6 | 61 62 63 64 65 66 67 68 89 71 |               |
| 11         | 111    | 111         | 120000                                  |                               |                                        |                                |                              |                               |               |
| 0          | RCC    |             | -60-1111                                | -36.                          | 120000                                 | annu                           | S. L. L. L. L.               | 0                             | MHEEL         |
| 0          | 444    | 441         | 12                                      |                               |                                        |                                | 11111111                     | 1.1.1.1.1.1.1                 | 1111111       |
|            | RCL    |             | -60                                     | 36                            | 12                                     | 0                              | -8.                          | a                             | MMEEL         |
| 1          | 111    |             | Van                                     | سسسب                          |                                        |                                | minu                         |                               | mini          |
|            | BOX    | 111         |                                         | -20                           | 15                                     | 10.                            | a                            | A.LLILL                       | ENIGIZME      |
| 2          | 111    | 111         | On III                                  | 1410                          | A. L.                                  | 0-11111                        | 0                            | 301-11111                     |               |
| 3          | RAW    | 111         |                                         | -20                           | 1500                                   | 0                              | Orlini                       | 1000000                       | (ENGINE)      |
| 4          | RAM    | 111         | 00111111                                | 1000                          | 0-11111                                | 40                             | Dei 11111                    | 0.11.111                      | بسسب          |
| 4          | 1.0767 | 111         | 0                                       | 20011111                      | 1850                                   | 4.                             |                              |                               | (ENGINE)      |
| 5          | ARB    | 111         |                                         | -10                           | 45.                                    | 1/4                            | On Line                      | A. IIII                       |               |
| 5          |        | 111         | -29                                     | 0.11.11.                      | 35                                     | -20                            | 10.                          | 20                            | (ENGZAEI)     |
| 5          | 111    |             | 30                                      |                               | 195                                    | -30.                           | 10.                          | 185011111                     |               |
| 5          | 11     |             | -30.                                    | Out I I I I                   | 35                                     |                                | 0                            | 35.                           |               |
| 5          | 11     | 111         | 3124 7658                               | 1375 2376                     |                                        |                                |                              |                               |               |
| 6          | ARS    | iii         |                                         |                               |                                        |                                |                              | 11111111                      |               |
| 6          |        | 111         | 111111111111111111111111111111111111111 | <b>s</b>                      |                                        |                                |                              |                               | 11111111      |
| 6          | 11     | 111         | -70                                     | -20                           | 15                                     | -70                            | -20-1111                     | 15,1111                       | 1111111       |
| 6          |        | 111         |                                         | -20                           | 15.                                    | -70                            | -20.                         | 15,                           | 1111111       |
| 6          | لبيا   | 111         | -70.                                    | -20                           | 15.                                    |                                | Lilian                       | 1111111111                    | Lilitaria     |

(1) Must be left-adjusted

Date: Aug. 1970 SAMPLE PROBLEM USED FOR: SCALARS AND VECTORS OF THE BODY BODY (1) IDENTIFICATION X NO. TYPE Y

<sup>(1)</sup> Must be left-adjusted

Date: Aug. 1970

| BO         | ODY       |             |                               | 5.0                           | TALADO AND UEOR                        | ODG OF MUE BOD                |                               |                              | Date: Aug. 1970                        |
|------------|-----------|-------------|-------------------------------|-------------------------------|----------------------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------------------|
|            |           |             |                               | 50                            | LALARS AND VECT                        | ORS OF THE BOD                | Y<br>I                        | 1                            |                                        |
| (1)<br>NO. | TYPE      |             | х                             | Y                             | Z                                      | х                             | Y                             | Z                            | IDENTIFICATION                         |
| 1,3:       | 3 4, 5, 6 | 7, 8, 9, 10 | 11 12 13 14 15 16 17 18 19 20 | 21 22 23 24 25 26 27 28 29 30 | 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 | 41 42 43 44 45 46 47 48 49 50 | 5; 52 53 54 55 56 57 58 59 60 | 61 62 63 64 65 56 67 68 69 7 | 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 |
|            | REC       | LII         | a                             | O                             | 24.                                    | 0.11.111                      | 0.11111                       |                              | TRUME                                  |
| 18         | 1.        | 111         | 0                             | 7.5.                          | 0.1.1111                               | 5                             | Q                             | 0.11111                      | 111111111                              |
| 19         | SPH       |             | Oni                           | a                             | 52                                     | 5                             |                               | IIIIIIII                     | MEROLLIL                               |
| 20         | TEC       | 111         | 0                             | -7-5:1111                     | 49.                                    | 20.                           | 0                             | -121-1111                    | ARM                                    |
| 20         | Lu        |             | 00111111                      | Orellilli                     | 3.0                                    | O. I.I.I.I.                   | A                             | D-ILLILI                     | 111111111                              |
| 10         | 111       |             | a                             | 11111111                      | 11111111                               |                               | 11111111                      | 111111111                    | 111111111                              |
| 21         | TEC       |             | 0.11.11.                      | 7-5                           | 1490                                   | 20.                           | 00111111                      | -/21-11111                   | BOM                                    |
| 21         | 111       |             | 0.11.111                      | 10.11.1111                    | 3                                      | 0                             | 2                             | 0                            | 11111111                               |
| 21         | 1         | 111         | 20111111                      | 111111111                     |                                        |                               | 11111111                      | 111111111                    | 111111111                              |
| 22         | TRE       | 111         | -2                            | -14.5                         | 270                                    | 32                            | A                             | 7/20-11111                   | LEG                                    |
| 12         | 111       | 111         | 3-11111                       | de l'illi                     |                                        | 11:11:11:11                   |                               | 111111111                    | 111111111                              |
| 23         | TAC       | 111         | -21-11111                     | 4.5.                          | 270                                    | 32                            | 0.111111                      | -12-11111                    | LEG                                    |
| 23         | 1.1       | 111         | 3                             | 20111111                      | HILLIAN                                | 111111111                     | 111111111                     |                              | 11111111                               |
| 24         | TIOR      |             | 21.5111                       | Q. 1 . 1 . 1 . 1              | 3700                                   | 1/10/11/11/11                 | del IIIII                     | Q-111111                     | STEERING                               |
| 2.4        | 1.1       | 111         | 8                             | electrical l                  |                                        |                               | 11.11.11.11                   |                              | MAEEL                                  |
| 25         | ARB       | 111         | 211.5                         | -6-11111                      | 33.5                                   | 21.5                          | 60111111                      |                              | CENTER                                 |
| 25         | 111       |             | 211-51111                     | 0.111111                      | 44.                                    | 40.                           | 0                             |                              | STEERING                               |
| 15         | 11        | 111         |                               | -60111111                     | 33.5                                   | 21.5                          | 6-11111                       |                              | WHEEL                                  |
| 25         | 1.1       | 111         | 2105                          | 010111111                     | 44.                                    | 40.                           | 0.111111                      | 37000                        |                                        |
| 25         | 11        |             | 3127 2146                     | 4328 13.45                    |                                        |                               |                               | 11.11.11.                    |                                        |
| L          |           |             |                               |                               |                                        |                               |                               |                              | 11111111                               |

(1) Must be left-adjusted

14

| Z              | 8                                                                           | 1    | 1              | -  | -   | - | -   | -   | -       | -    | +     | -    | +    | +   | -  | -  | -   | -   | -   | +  | -  |
|----------------|-----------------------------------------------------------------------------|------|----------------|----|-----|---|-----|-----|---------|------|-------|------|------|-----|----|----|-----|-----|-----|----|----|
| IDENTIFICATION | 78.75                                                                       | 1    | -              | 1  | 7   | 7 | 7   | -   | 7       | 7    | 7     | =    | =    | 7   | 7  | 7  | =   | =   | =   | 7  | 7  |
| CAJ            | 75,77                                                                       | 1    | 1              | =  | -   | = | _   | =   | 7       | 1    | 7     | =    | 7    | 7   | 7  | 7  | 7   | 1   | 7   | 7  | -  |
| IFI            | 74.75                                                                       | =    | =              |    | =   | - | 7   | =   | =       | =    | =     | =    | -    | 7   | =  | 7  | =   | =   | 7   | 7  | 7  |
| INE            | 12,73                                                                       | -    | -              | -  | +   | - | -   | 1   | =       | -    | 1     | =    | =    | =   |    |    | =   | -   | 7   | =  | 7  |
| IDE            | 65, 66, 67, 69, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80              | =    | =              | =  | 3   | - | -   | -   | -       | -    | =     | =    | -    | 1   | 7  | 4  | 1   | 7   | 1   | 1  | =  |
| NUMBER         | 88                                                                          | 11/1 | 5              | -  | 1   | - | =   | =   | 2.5     | 200  | 4     | =    |      | 7   | 7  | 7  | 7   | 7   | 7   | =  | 7  |
| + OK -         | 66, 67                                                                      | Ē    | 3              | 3  | -   | - | =   | =   | 4       | 4    |       | =    | 7    | 1   | =  | =  | 7   | 1   | =   | -  | 7  |
| - OB           | 85                                                                          | -    | 8              | 1  | -   | + | -   | 1   | -       | -    | 1     | -    | -    | 7   | +  | =  | -   | 7   | -   | +  | -  |
| иливев         | 58 59 60 61 62 63 64                                                        | Q    | 400            | 1  |     | 1 | -   | -   | 19.4    | 6    | 17    | -    | 1    | -   | +  | -  | -   | -   | -   | -  | -  |
| BODA           | 9 09                                                                        | 110  | =              | =  | -   | = |     | =   | L       | -1.9 | 7     | =    | =    | 7   | -  | 7  | =   | 7   | 7   | 7  | 7  |
| + OB -         | 65 85                                                                       | -    | -              | +  | -   | - | 7   | -   | 7       | -    | -     | 7    | -    | 7   | 7  | 7  | -   | -7  | -   | 7  | -7 |
| ОК             | 78, 57                                                                      | -    | 1100           | +  | +   | 1 | -   | -   | -       | -    | BA    | -    | 7    | 7   | 7  | 7  | 7   | 7   | 7   | 7  | -1 |
| NUMBER         | 35                                                                          | 1.9  | 1              | 1  | 1   | 1 | =   | 1   | F. 13.3 | 8/1  | 16    | 110  | 1    | 7   | 7  | 7  | 7   | 7   | 7   | 7  | 7  |
| HODY -         | 51 52 53                                                                    | -    | L              | +  | =   | - | =   |     | -       | 4    | =     | -    | 7    | 7   | 7  | 7  | =   | =   | =   | 7  | 7  |
| OR             | 19 50 51                                                                    | -    | -              | 1  | +   | - | -   | -   | -       | -    | 80    | -    | -    | -   | -  | -  | -   | -   | -   | -  | -  |
| NOWBEK         | 47 48                                                                       | Og   | -10            | -  | -   | - | -   | -1  | 200     | 1    | 45    | 10   | 23   | -   | -  | 3  | -   | -   | -   | -  | 7  |
| BODA           | 4                                                                           | 7    | 1              | 7  | 7   | 7 | 7   | 7   | ŭ       | 7    | 7     | ù    | 7    | -   | 7  | -  | -   | +   | +   | +  | -  |
| - AO +         | 4 45                                                                        | -    | -              |    | _   | - |     | -   | -       | -    |       | 7    | 0    | 7   | -  | 7  |     | 7   | -   | -7 | -  |
| ОК             | 42 43                                                                       | -    | -              | 4  |     | - | -   | - 7 | -       | -100 | 1400  | 5    | 20   | 7   | -7 | -7 | -   | -   | -   | -  | -  |
| NUMBER         | 1 0 6                                                                       | 7    | 5              | 7  | = = | 7 | =   | 4   | 100     | 1    | 1     | -15  | 3    | 7   | 7  | 7  | =   |     | -   | +  | 3  |
| HODY -         | 31,38,39                                                                    | 1    | 7              | 1  | 7   | 7 | 7   | 7   | 7       | 1    | 7     | 1    | 1    | 7   | 7  | 4  | 3   | 4   | -   | -  | -  |
| ОК             | 35, 36, 3                                                                   | -    | 7              | -  | 7   | - | -   | -   | -       |      | 300   | -    | 9    | =   |    | -  | -   | -   | -   | -  |    |
| иливек         | ×                                                                           | 7    | Q <sub>Q</sub> | -  | H   | 4 | -   |     | 0.00    | 11/- | 1.3   | -1.4 | 10   | -   | -  | -  |     | =   | -   | -  | 1  |
| BODX           | 32                                                                          | "1   | 7              | 7  | 7   | 4 | =   | 1   | 0       | L    | -     | 1_   | 7    | -   | -  | 1  | -   | -   |     | -  | -  |
| - AO +         | 8,                                                                          | -    | -              | 7  | 7   | - | -7  |     | - 1     | -    | -     |      | •    |     | -  | -  |     |     |     | -  |    |
| au             | 77 28 2                                                                     | 2    | -              | ~  | -   | - |     |     | 6       | 0    | -3568 | 67   | 2000 | 5   |    |    |     |     |     | -  |    |
| NOWBER         | 5 26                                                                        | 4.7  | 7              | L  | -   | = | =   |     | -19     | 10   | 20    | 6    | .9   | 200 | -  | -  |     | -   | -   | -  | -  |
| BODX<br>+ OK - | 3.24.2                                                                      | 1    | 7              | =  | 7   |   | =   | 1   | -       | -    | =     |      | 1    | -   | -  | _  | -   | 4   | -   | -  | -  |
| ОК             | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 31, 34, | -    | -              | -  | -   | - | -   |     | -       | -    | -     | -    | 1966 | -   |    | -  |     | -   | -   | 1  | -  |
| иливек         | 9,20,2                                                                      | 3    | · .            | KL | -   |   |     |     | 81      | 6    | 19.6  | 3    | 19   | 24  | 35 |    |     |     |     |    | -  |
| BODA           | 7 18                                                                        | -    | 7              | -  | -   | - | 1   | -   | L       | -    | 1     | _    | -    | 3   | -  | -  | =   | -   | -   | -  | =  |
| - AO +         | 15,16.1                                                                     |      | -              |    | -   |   |     |     |         |      |       |      | 1    |     |    |    |     |     |     |    |    |
| ОВ             | 13 14 15                                                                    | _    | 2              | 19 | 00  | 0 | 0   | -   | 6       | 00   |       | 6    | 1860 | (7) | 67 |    | -   | -   |     | -  |    |
| NUMBER         | 1.12                                                                        | -    | -              | -  | -   | = | 1   | 11  | -       | 1    | 100   | -    | 1    | 3   | -  | -  | 1   | =   |     | -  |    |
| + OK -         | 9 10 11 12 13                                                               | 1    | 1              | 1  | =   | - | -   | -   | -       | -    | -     | -    | -    |     | -  | -  | 100 | -   |     | -  | -  |
| ОВ             | 8 1                                                                         | -    | 8              | 0  | -   |   |     |     | 8       | -    | -     |      | 8    |     | -  |    |     | -   |     | 1  |    |
|                | 10                                                                          |      | 8              | e) | 7   | 5 | 19  | 7   | O.      |      |       | 0    |      | 1   | 3  | -  |     |     |     |    |    |
| иливек         | 3 4 5                                                                       | 1 -  | -              | *3 | -   | - |     |     |         | ]    | -     | -    | 1    | -   | 1  | L  | 1   | 1   | 1   | 1  |    |
| RECION         | ~                                                                           |      | 1 -            | -  | -   | 1 | 1 - | 1   | 1       | 1    | 1     | 4    | 1    |     | 1  |    | 1   | 4 - | 1 - | 4  |    |

REGION TABLE

10

Date Aus, 1970

USED FOR: SAMPLE PROBLEM

| ON ITEM CODE                                        | AIR SPACE<br>CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLANK                      | ALPHAMERIC DESCRIPTION OF REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IDENT        |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19; | 20 21 22 23 24 25 26 27 28 29 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31 32 33 34 35 36 37 38 39 | 40 41 47 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6,77,78,79,8 |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lu           |
|                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | BOOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114          |
| 113111110                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | BUBBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111          |
| 111/5                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | WHEEL RIGHT FROMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111          |
| 5 11111/5                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11111111                   | WAEEL LEFT FRONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111          |
| 7                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | WHEEL REGINT REAR !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111          |
| 9 11 11 11                                          | 1111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1111111                    | The second secon | 111          |
| 9 200                                               | The same of the sa |                            | ENGINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111          |
| 10 111 300                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| 11/1/11/11/100                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11111111                   | STEERING MHEEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |
| 112 1111401                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111111111                  | STEERING SHAFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111          |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111          |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111          |
|                                                     | 1111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11111111                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111          |
|                                                     | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111          |
|                                                     | 1111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111          |
| 11111111                                            | 1111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111          |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIL          |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111          |

|     |       | card) |           |           | 24     | 12      |        |          |
|-----|-------|-------|-----------|-----------|--------|---------|--------|----------|
| -10 | 0000. | 100   |           | 10000-    | 10000. | -10000. | 10000. |          |
| 2   | BOX   | 75.   | -36.      | 12.       | -150.  | 0.      | 0.     | BODY     |
| 2   |       | 0.    | 72.       | 0.        | 0.     | 0.      | 36.    |          |
| 3   | BOX   | 74.   | -35.      | 13.       | -148.  | 0.      | 0.     | (1.0)    |
| 3   |       | 0.    | 70.       | 0.        | 0.     | 0.      | 34.    | Sean J   |
| 4   | ARB   | 75.   | -36.      | 12.       | 75.    | 36.     | 12.    | FRONT    |
| 4   |       | 75.   | 36.       | 48.       | 75.    | -36.    | 48.    |          |
| 4   |       | 100.  | 0.        | 12.       | 100.   | 0.      | 12.    |          |
| 4   |       | 100.  | 0.        | 12.       | 100.   | 0.      | 12.    |          |
| 4   |       | 1234  | 6435 6128 | 6237 7415 | 7415   |         |        |          |
| 5   | ARB   | -75.  | -36.      | 12.       | -75.   | 36.     | 12.    | REAR     |
| 5   |       | -75.  | 36.       | 48.       | -75.   | -36.    | 48.    |          |
| 5   |       | -100. | -24.      | 12.       | -100.  | 24.     | 12.    |          |
| 5   |       | -100. | 24.       | 20.       | -100.  | -24.    | 20.    |          |
| 5   |       | 1234  | 5678 3487 | 1265 2376 | 1485   |         |        |          |
| 6   | ELL   | 20.   | 0.        | 48.       | -20.   | 0.      | 48.    | BUBBLE   |
| 6   |       | 50.   |           |           |        |         |        |          |
| 7   | ELL   | 7 0.  | 0.        | 48.       | 24.    | 0.      | 0.     | (1.0)    |
| 7   |       | 14.   |           |           |        |         |        |          |
| 8   | RCC   | 60.   | -36.      | 12.       | -0.    | 8.      | 0.     | MHEEL    |
| 8   |       | 12.   |           |           |        |         |        |          |
| 9   | RCC   | 60.   | 36.       | 12.       | 0.     | -8.     | 0.     | WHEEL    |
| 9   |       | 12.   |           |           |        |         |        |          |
| 10  | RCC   | -60.  | -36.      | 12.       | 0.     | 8.      | 0.     | WHEEL    |
| 10  |       | 12.   |           | 200       |        |         |        |          |
| 11  | RCC   | -60.  | 36.       | 12.       | 0.     | -8.     | 0.     | WHEEL    |
| ii  |       | 12.   |           | 223       |        |         |        |          |
| 12  | BOX   | -70.  | -20.      | 15.       | 40.    | 0.      | 0.     | ENGINE   |
| 12  |       | 0.    | 40.       | 0.        | 0.     | 0.      | 30.    |          |
| 13  | RAW   | -70.  | -20.      | 45.       | 0.     | 0.      | -10.   | (ENGINE) |
| 13  |       | 0.    | 10.       | 0.        | 40.    | 0.      | 0.     |          |
| 14  | RAW   | -70.  | 20.       | 45.       | 0.     | 0.      | -10.   | (ENGINE) |
| 14  |       | 0.    | -10-      | 0.        | 40.    | 0.      | 0.     |          |
| 15  | ARB   | -70.  | -10.      | 45.       | -70.   | 10.     | 45.    | (ENGINE) |
| 15  |       | -70.  | 0.        | 35.       | -70.   | 0.      | 35.    |          |
| 15  |       | -30.  | -10.      | 45.       | -30.   | 10.     | 45.    |          |
| 15  |       | -30.  | 0.        | 35.       | -30.   | 0.      | 35.    |          |
| 15  |       |       | 7658 1375 |           |        | 670     |        |          |
| 16  | ARS   | 3101  | 1030 1313 |           |        |         |        |          |
| 16  |       |       | 4         | 5         |        |         |        |          |
| 16  |       | -70.  | -20.      | 15.       | -70.   | -20.    | 15.    | 1        |
| 16  |       | -70.  | -20.      | 15.       | -70.   | -20.    | 15.    | 2 3      |
| 16  |       | -70-  | -20.      | 15.       | 10.70  |         |        | 3        |
| 16  |       | -70.  | -20.      | 15.       | -70.   | -10.    | 15.    | 4        |
| 16  |       | -70.  | -10.      | 25.       | -70.   | -20.    | 35.    | 5        |
| 16  |       | -70.  | -20.      | 15.       |        |         |        | 6        |
| 16  |       | -30.  | -20.      | 15.       | -30.   | -10.    | 15.    | 7        |
| 16  |       | -30.  | -10.      | 25.       | -30.   | -20.    | 35.    | 8        |
| 16  |       | -30.  | -20.      | 15.       |        |         |        | 9        |
| 16  |       | -30.  | -20.      | 15.       | -30.   | -20.    | 15.    | 10       |
| 16  |       | -30.  | -20.      | 15.       | -30.   | -20.    | 15.    | 11       |
| 16  |       | -30.  | -20.      | 15.       | 7.7    | 0.7.0,3 |        | 12       |
| 17  | ARS   | 300   |           | 150       |        |         |        | 1 100    |
| 17  |       |       | 5         | 4         |        |         |        |          |
|     |       |       |           |           |        | 200     |        |          |
| 17  |       | -70.  | 20.       | 15.       | -70.   | 20.     | 15.    | 1 2      |

FIG. 40. Listing of Sample Problem Input

| 17 |     |    |     | 70.  |      | 20       | 15.  | -70.  |         | 10.   | 15.     |     |          | 2  |
|----|-----|----|-----|------|------|----------|------|-------|---------|-------|---------|-----|----------|----|
| 17 |     |    |     |      |      | 20.      |      |       |         |       | 15.     |     |          | 4  |
| 17 |     |    |     | 30.  |      | 10.      | 15.  | -30.  |         | 20.   |         |     |          | ~  |
| 17 |     |    |     | 70.  |      | 20.      | 15.  | -70.  |         | 10.   | 25.     |     |          | 5  |
| 17 |     |    | -   | 30.  |      | 10.      | 25.  | -30.  |         | 20.   | 15.     |     |          | 6  |
| 17 |     |    | -   | 70.  |      | 20.      | 15.  | -70.  |         | 20.   | 35.     |     |          | 7  |
| 17 |     |    | -   | 30.  |      | 20.      | 35.  | -30.  |         | 20.   | 15.     |     |          | 8  |
| 17 |     |    |     | 70.  |      | 20.      | 15.  | -70.  |         | 20.   | 15.     |     |          | 9  |
| 17 |     |    |     | 30.  |      | 20.      | 15.  | -30.  |         | 20.   | 15.     |     |          | 10 |
|    | 6-0 |    | 177 |      |      |          |      |       |         |       |         |     | TREAM    | TO |
|    | REC |    |     | 0.   |      | 0.       | 24.  | 0.    |         | 0.    | 28.     |     | TRUNK    |    |
| 18 |     |    |     | 0.   |      | 7.5      | 0.   | 5.    |         | 0.    | 0.      |     |          |    |
| 19 | SPH | 1  |     | 0.   |      | 0.       | 52.  | 5.    |         |       |         |     | HEAD     |    |
| 20 | TEC |    |     | 0.   | 1.09 | -7.5     | 49.  | 20.   |         | 0.    | -12.    |     | ARM      |    |
| 20 |     |    |     | 0.   |      | 0.       | 3.   | 0-    |         | 2.    | 0.      |     |          |    |
| 20 |     |    |     | 2.   |      |          |      | -     |         |       |         |     |          |    |
|    | *** |    |     |      |      | 7 6      |      | 20    |         | 0     | -12.    |     | ARM      |    |
|    | TEC |    |     | 0.   |      | 7.5      | 49.  | 20.   | •0      | 0.    |         |     | ARM      |    |
| 21 |     |    |     | 0.   |      | 0.       | 3.   | 0.    |         | 2.    | 0.      |     |          |    |
| 21 |     |    |     | 2.   |      |          |      |       |         |       |         |     |          |    |
| 22 | TRO |    | -   | -2.  |      | -4.5     | 27.  | 32.   |         | 0.    | -12.    |     | LEG      |    |
| 22 |     |    |     | 3.   |      | 2.       |      |       |         |       |         |     |          |    |
|    | TRO |    | -   | -2-  |      | 4.5      | 27.  | 32.   | 3       | 0.    | -12.    |     | LEG      |    |
| 23 |     |    |     | 3.   |      | 2.       |      |       |         | -     |         |     | 3-3      |    |
|    | TOP | ,  |     |      |      |          | 27   | 1.1   |         | 0     |         |     | CYEFATH  | ~  |
|    | TOP |    |     | 21.5 |      | 0.       | 37.  | 1.    |         | 0.    | 0.      |     | STEERING | 3  |
| 24 |     |    |     | 8.   |      | 1.       |      |       |         |       |         |     | MHEEL    |    |
| 25 | ARE | 3  |     | 21.5 | -    | -6.      | 33.5 | 21.   | 5       | 6.    | 33.5    | i   | CENTER   |    |
| 25 |     |    |     | 21.5 |      | 0.       | 44.  | 40.   | 1       | 0.    | 37.     |     | STEERING | 3  |
| 25 |     |    |     | 21.5 |      | -6.      | 33.5 | 21.   |         | 6.    | 33.5    |     | WHEEL    | 7  |
| 25 |     |    |     | 21.5 |      | 0.       | 44.  | 40.   |         |       | 37.     |     | MI CEE   |    |
|    |     |    |     |      | 2111 |          |      |       |         | 0.    | 31.     |     |          |    |
| 25 |     |    |     |      |      | 4328 134 |      |       | 12      | 70.   |         |     |          |    |
|    | 1   |    |     | 1    | -2   | -4       | -5   | -6    | -8      | -9    | -10     | -11 |          |    |
|    |     | OR |     | 2    | -3   | -7       | -8   | -9    | -10     | -110R | 40R     | 5   |          |    |
|    | 3   |    |     | 6    | -7   | -2       |      |       |         |       |         |     |          |    |
|    | 4   |    |     | 8    |      |          |      |       |         |       |         |     |          |    |
|    | 5   |    |     | 9    |      |          |      |       |         |       |         |     |          |    |
|    | 6   |    |     | 10   |      |          |      |       |         |       |         |     |          |    |
|    |     |    |     |      |      |          |      |       |         |       |         |     |          |    |
|    | 7   | 20 |     | 11   |      | - 42     | 00   | - 47  | - 43    | -32-  | 100 and | -05 |          |    |
|    | 8   | OR |     | 3    | -18  | -19      | -20  | -21   | -22     | -23   | -24     | -25 |          |    |
|    |     |    |     | -8   | -9   | -10      | -11  | -120R | 7       | -18   | -19     | -20 |          |    |
|    |     |    |     | -21  | -24  | -250R    | 130R | 140R  | 150R    | 160R  | 17      |     |          |    |
|    | 9   |    |     | 3    | 12   | -13      | -14  | -15   | -16     | -17   | 20      |     |          |    |
|    | 10  | OP |     | 180R |      | OR 200R  |      |       | 23      |       |         |     |          |    |
|    |     | UN |     |      |      | - TANK   | 2104 | ZZUK  | 23      |       |         |     |          |    |
|    | 11  |    |     | 3    | 24   | -25      |      |       |         |       |         |     |          |    |
|    | 12  |    |     | 3    | 25   |          |      |       |         |       |         |     |          |    |
|    | -1  |    |     |      |      |          |      |       |         |       |         |     |          |    |
|    |     |    | 1   |      |      | 0.       | 1    | OUTS  | IDE AL  | 4     |         |     |          |    |
|    |     |    | 2   |      | 100  |          |      | BODY  |         |       |         |     |          |    |
|    |     |    | 3   |      | 101  |          |      | BUBB  |         |       |         |     |          |    |
|    |     |    | 4   |      | 151  |          |      |       |         | FRONT |         |     |          |    |
|    |     |    | 7   |      |      |          |      |       | L RIGH  |       |         |     |          |    |
|    |     |    | 5   |      | 152  |          |      |       | L LEFT  |       |         |     |          |    |
|    |     |    | 6   |      | 153  |          |      |       | L RIGH  |       |         |     |          |    |
|    |     |    | 7   |      | 154  |          |      | WHEE  | L LEFT  | REAR  |         |     |          |    |
|    |     |    | 8   |      |      | 0.       | 2    |       | INSIDE  |       |         |     |          |    |
|    |     |    | 9   |      | 200  |          | 2    | ENGI  |         |       |         |     |          |    |
|    |     |    | 10  |      | 300  |          |      | MAN   |         |       |         |     |          |    |
|    |     |    |     |      |      |          |      |       |         |       |         |     |          |    |
|    |     |    | 11  |      | 400  |          |      |       | RING W  |       |         |     |          |    |
|    |     |    | 12  |      | 401  |          |      | STEE  | RING SI | HAFT  |         |     |          |    |
|    |     |    |     |      |      |          |      |       |         |       |         |     |          |    |
|    |     |    |     |      |      |          |      |       |         |       |         |     |          |    |
|    | 2   |    |     |      | 7.1  |          |      |       |         |       |         |     |          |    |
|    | 2   |    | 31  |      | 11   |          | L.   |       |         |       |         |     |          |    |
|    |     |    | 37  | 0-   | 71   |          | ı    | 0.    | _       | 500   |         |     |          |    |
| 0. |     |    | 31  | 0.   |      | 200.     |      | 0.    |         | 500.  |         |     |          |    |
|    |     |    |     | 0.   |      | 200.     |      | 0.    | -6      | 500.  |         |     |          | ,  |
| 0  |     |    |     |      |      | 200.     | 1    | 0.1   |         | 500.  |         |     |          | 1  |

(blank card)

FIG. 40. Listing of Sample Problem Input (Concluded)

APPENDIX

# DATA CHECKSHEET

| CARD ID | PG | PARA   | VALUE     | CARD ID | PG       | PARA   | VALUE |
|---------|----|--------|-----------|---------|----------|--------|-------|
| 1       | 20 | IRDTP4 |           | 16      |          | USE    |       |
|         | 20 | IWRTP4 |           | 1       |          | REGION |       |
|         | 20 | ITESTG |           | 1       |          | TABLE  |       |
|         | 20 | IRAYSK |           | 1       |          |        |       |
|         | 20 | ICARDI |           |         | 65       | NRAYS  |       |
|         | 21 | IENTLV |           | 17A     | 65       | NGIERR |       |
|         | 21 | IVOLUM |           | ]       |          |        |       |
| 2       | 22 | IT(I)  |           | 17B     | 66       | XB(1)  |       |
|         |    |        |           |         | 66       | XB(2)  |       |
|         |    |        |           | 1       | 66       | XB(3)  |       |
|         | _  |        |           |         | 66       | IRSTRT |       |
|         | -  |        |           | 17C     | 67       | XBF(1) | -     |
| 3       | 23 | NRPP   |           | 1 2,0   | 67       | XBF(2) |       |
|         | 23 | NTRIP  |           | 1       | 67       | XBF(2) |       |
|         | 23 | NSCAL  |           | 1       | 67       | IRFIN  |       |
|         | 23 | NBODY  |           | 1       | -        | IRFIN  |       |
|         | 23 | NRMAX  |           | 17B     | 66       | XB(1)  | 1     |
|         | 23 | IPRIN  |           |         | 66       | XB(2)  | 1     |
|         | 23 | IRCHEK |           | 1       | 66       | XB(3)  |       |
|         |    |        |           | 1       | 66       | IRSTRT |       |
| 4       | 24 | X(1)   |           |         |          |        |       |
|         | 24 | X(2)   |           | 17C     | 67       | XBF(1) |       |
|         | 24 | X(3)   |           | 1       | 67       | XBF(1) |       |
|         | 24 |        |           | 11      | 67       | XBF(2) |       |
|         | 24 | X(5)   | 1 = = = 3 |         | 67       | IRFIN  |       |
|         |    | X(6)   |           |         |          |        |       |
| 5-15    |    | USE    |           |         | $\vdash$ |        | -     |
|         |    | BODY   |           |         |          |        |       |
|         |    | TABLE  |           |         |          |        |       |

### DATA CHECKSHEET

| CARD ID                  | PG  | PARA   | VALUE | CARD ID | PG | PARA | VALUE |
|--------------------------|-----|--------|-------|---------|----|------|-------|
| 18A                      | 68  | IR     |       |         |    |      |       |
|                          | 68  | NG1ERR |       | 7       |    |      |       |
| 18B                      | 69  | XV(1)  |       | 1       |    |      |       |
|                          | 69  | XV(2)  |       | 4       |    |      | 1     |
|                          | 69  | XV(3)  |       | -       |    |      | +     |
| 18C                      | 70  | XT (1) |       |         |    |      |       |
|                          | 70  | XT(2)  |       | 4       |    |      |       |
|                          | 70  | XT(3)  |       | -       |    |      | -     |
| 18D                      | 71  | XO(1)  |       | 1       |    | -    |       |
|                          | 71  | XO(2)  |       |         |    |      |       |
|                          | 71  | XO(3)  |       |         |    |      |       |
| 18E                      | 72  | XA(1)  |       | -       |    |      |       |
|                          | 72  | XA(2)  |       |         |    |      |       |
|                          | 72  | XA(3)  |       |         |    |      |       |
| 72 X<br>72 X<br>18F 73 I | DOD |        | -     |         |    |      |       |
|                          | 73  | DT     |       |         |    |      |       |
| 19                       |     | USE    |       |         |    |      |       |
|                          |     | REGION |       |         |    |      |       |
|                          |     | IDENT  |       |         |    |      |       |
|                          |     | TABLE  |       | -       |    |      |       |
| 20                       | 77  | NOAA   |       |         |    |      |       |
|                          | 77  | IWOT   |       |         |    |      | 11/2  |
|                          | 77  | ITAPE8 |       |         |    |      | 1     |
|                          | 77  | NAREA  |       |         |    |      | -     |

## TN4565-3-71 Vol I

DATA CHECKSHEET

Grid Cell Description. Enter data for each attack angle desired.

| CARD ID | PG       | PARA    | VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CARD ID                                                                                                                       | PG                                                                                                                                            | PARA   | VALUE |
|---------|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
| 21A     | 78       | NX      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21A                                                                                                                           | 78                                                                                                                                            | NX     | VALUE |
|         | 78       | NY      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78                                                                                                                            | NY                                                                                                                                            |        |       |
|         | 78       | IRSTRT  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78                                                                                                                            | IRSTRT                                                                                                                                        |        |       |
|         | 78       | IENC    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                             | 78                                                                                                                                            | IENC   |       |
|         | 78       | NG1ERR  | 21A   78   NX   78   NY     78   IRSTRT     78   IENC     78   IENC     78   NGIERR     78   NGIERR     78   NSTART     78   NEND     78   ICENTER     21B   79   A     79   E     GTH     79   GROUND     GROUND     HIFT   21C   80   XSHIFT   HIFT   80   YSHIFT     80 | 1                                                                                                                             | 78                                                                                                                                            | NG1ERR |       |
|         | 78       | NSTART  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NSTART                                                                                                                        |                                                                                                                                               |        |       |
|         | 78       | NEND    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.537777                                                                                                                      |                                                                                                                                               |        |       |
|         | 78       | ICENTER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                             | 21A 78 NX 78 NY 78 IRSTRT 78 IENC 78 NG1ERR 78 NSTART 78 NEND 78 ICENTER  21B 79 A 79 E 79 ENGTH 79 ZSHIFT 79 GROUND  21C 80 XSHIFT 80 YSHIFT |        |       |
| 21B     | 79       | A       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21B                                                                                                                           | 79                                                                                                                                            | A      |       |
|         | 79       | E       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               | 79                                                                                                                                            |        |       |
|         | 79       | ENGTH   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                             | 79                                                                                                                                            |        |       |
|         | 79       | ZSHIFT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78 IRSTRT 78 IENC 78 NG1ERR 78 NSTART 78 NEND 78 ICENTER  21B 79 A 79 E 79 ENGTH 79 ZSHIFT 79 GROUND  21C 80 XSHIFT 80 YSHIFT |                                                                                                                                               |        |       |
|         | 79       | GROUND  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               | 78 NX 78 NY 78 IRSTRT 78 IENC 78 NGIERR 78 NSTART 78 NEND 78 ICENTER  79 A 79 E 79 ENGTH 79 ZSHIFT 79 GROUND  80 XSHIFT 80 YSHIFT             |        |       |
| 21C     | 80       | XSHIFT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21C                                                                                                                           | 80                                                                                                                                            | XSHIFT |       |
|         | 80       | YSHIFT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                                                                                                                            | YSHIFT                                                                                                                                        |        |       |
|         | 80       | CELSIZ  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               | 80                                                                                                                                            |        |       |
|         | +        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                             |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                             |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                                               |        |       |
|         | $\vdash$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                             |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                             |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                             |                                                                                                                                               |        |       |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                             |                                                                                                                                               |        | +     |
|         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                             |                                                                                                                                               |        |       |

DATA CHECKSHEET Area Input. Enter data for each attack angle desired.

| PARA VALUE | PG | CARD ID | VALUE | PARA   | PG | CARD ID |
|------------|----|---------|-------|--------|----|---------|
|            | 82 | 22A     |       | NX     | 82 | 22A     |
| 7          | 82 |         |       | NY     | 82 |         |
| RSTRT      | 82 | 7       |       | IRSTRT | 82 |         |
| ENC        | 82 | 1       |       | IENC   | 82 |         |
| G1ERR      | 82 | 1       |       | NG1ERR | 82 |         |
| START      | 82 | 1       |       |        | 82 |         |
| END        | 82 | 1       |       | 82     |    |         |
| ELLUN      | 82 | 1       |       | CELLUN | 82 |         |
| REAUN      | 82 | 1       |       | AREAUN | 82 |         |
|            | 83 | 22В     |       | A      | 83 | 22B     |
|            | 83 |         |       | E      | 83 |         |
| NGTH       | 83 |         |       | ENGTH  | 83 |         |
| SHIFT      | 83 |         |       | ZSHIFT | 83 |         |
| ROUND      | 83 | 1       |       | GROUND | 83 |         |
| SHIFT      | 84 | 22C     |       | XSHIFT | 84 | 22C     |
| SHIFT      | 84 |         |       | YSHIFT | 84 |         |
| ELSIZ      | 84 | ]       |       | CELSIZ | 84 |         |
|            |    |         |       |        |    |         |
|            |    | 1       |       |        | H  |         |
|            |    | 1       |       |        |    |         |
|            |    | 1       |       |        |    |         |
|            |    | 1       |       |        |    |         |
|            |    |         |       |        |    |         |
|            |    |         |       |        |    |         |

| USEL       | FOR   |             |                               |                               |                                          |                               |                               |                              | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|-------|-------------|-------------------------------|-------------------------------|------------------------------------------|-------------------------------|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| во         | DY    |             |                               | sc                            | ALARS AND VECT                           | ORS OF THE BOD                | Y                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1)<br>NO. | TYPE  |             | х                             | Y                             | Z                                        | X                             | Y                             | Z                            | IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1, 2, 3    | 4,5,6 | 7, 8, 9, 10 | 11 12 13 14 15 16 17 18 19 20 | 21 22 23 24 25 26 27 28 29 30 | 31 32 33 34 35 36 37 38 39 40            | 41 42 43 44 45 46 47 48 49 50 | 51 52 53 54 55 56 57 58 59 60 | 61 62 63 64 65 66 67 68 69 7 | 0,71,72,73,74,75,76,77,78,79,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 111   | 111         | 11111111                      |                               | التلالبنسا                               |                               | بستنس                         | шини                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11         |       | لبنا        | 11111111                      | *********                     |                                          | 11111111                      |                               |                              | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11         |       | 111         | 11111111                      | 111111111                     | 444444                                   |                               | 11111111                      | 11111111                     | THE STATE OF THE S |
| 11         |       | 111         | 11111111                      | 111111111                     |                                          | 11111111                      | 11111111                      | 11111111                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11         | 1.4   | 111         | 11111111                      |                               | THE THEFT                                | 111111111                     | 11111111                      | 11111111                     | THE STATE OF THE S |
| ىلد        | 111   | LIL         | 11111111                      |                               | THILL                                    | III IIIIIII                   |                               | TITLL TO                     | HIIIII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 111        |       | 111         | 1111111                       |                               | 11111111                                 |                               | 11111111                      | THILL                        | <del>uuuuu</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 111        | 144   | 111         |                               | 1111111111                    |                                          |                               | 111111111                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 111        | 111   | 111         | 1111111                       | 1111111                       | 11111111                                 | 1111111                       | 11111111                      |                              | 111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -11        | 111   | 111         |                               | 11111111                      |                                          | 4111111                       | 1111111                       | 11111111                     | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11         | 111   | 111         | 11111111                      | 11111111                      | 111111111                                | 111111111                     | 11111111                      |                              | 11111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -          | ++1   | 441         | 11111111                      |                               |                                          | 1111111                       | 11111111                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11         |       | 111         |                               |                               | 1111111                                  |                               |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -          |       |             |                               |                               |                                          |                               |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       | 111         |                               |                               |                                          |                               |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1          |       | 111         |                               |                               |                                          |                               |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11         |       |             |                               | 1.1                           |                                          |                               |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1        |       | 111         | 11111111                      | 111111111                     |                                          |                               | A CLASSICAL CONTRACTOR        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 1-1   | 1.1.1       | 111111111                     | 111111111                     | +111111111                               |                               | 11111111                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1        |       | 1.1.1       | 111:11:11                     | 11111111                      | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                               |                               | 1111111                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(1) Must be left-adjusted



124

|   | E    | -    | -          | -     | - | -           | - | F    | -    | F    | -          | F     | F          | F      | F                                       | F    | F    | -          | F           | F          | 1 2 3                            | REGION                   |
|---|------|------|------------|-------|---|-------------|---|------|------|------|------------|-------|------------|--------|-----------------------------------------|------|------|------------|-------------|------------|----------------------------------|--------------------------|
|   | F    | F    | F          | E     | F | E           | F | F    | F    | E    | F          | F     | E          | F      | E                                       | E    | E    | F          | I           | E          | 4 5                              | NUMBER                   |
|   | -    | -    | -          | F     | - | F           | F | F    | -    | F    | -          | -     | F          | -      | -                                       | -    | -    | F          | E           | -          | 7,8                              | OR                       |
|   | E    |      |            | 1111  |   |             |   | 1111 | 1111 |      | 1111       |       | 1111       | 1111   | 1111                                    | 1111 | 1111 | 1111       | 1111        | 1111       | 9 10 11 12 13                    | + OR -<br>BODY<br>NUMBER |
|   | -    | F    | F          | -     | - | -           | - | F    | F    | -    | -          | -     | -          | -      | -                                       | -    | -    | F          | -           | -          | 14 15                            | OR                       |
|   | 1111 | 1111 |            |       |   |             |   |      | 1111 | 1111 | 1111       | 11.11 |            | -11-   |                                         | 111  | 1    | 1111       |             |            | 16 17 18 19 20                   | + OR -<br>BODY<br>NUMBER |
|   | F    | F    | ->         | -     | F | -           | F | F    | F    | F    | -          | -     | -          | -      | F                                       | -    | F    | F          | F           | F          | 21, 22                           | OR                       |
|   | 1    | TILL |            | 1111  |   | E           |   |      | 1111 | 111  | 1111       | 1111  | 1111       | 1111   | 1111                                    | 1111 | 1111 | 1111       | 1111        |            | 23, 24, 25, 26, 27               | + OR -<br>BODY<br>NUMBER |
| _ | -    | -    | F          | F     | - | F           | F | F    | -    | F    | F          | F     | -          | -      | F                                       | F    | F    | F          | -           | -          | 28 29                            | OR                       |
|   | FILE |      | 11111      | 11.11 |   |             | E | 1111 | 1111 |      | 1111       | TTTT  |            | 1111   |                                         |      | 1111 | 1111       | 1111        |            | 30 31 32 33 34                   | + OR -<br>BODY<br>NUMBER |
|   | -    | -    | F          | -     | - | -           | - | -    | -    | F    | -          | -     | -          | -      | -                                       | -    | -    | -          | +           | -          | 35, 36                           | OR                       |
|   |      | 1111 | 1111       |       | 1 | 1           |   |      | 1111 | 111  |            | 1111  |            | 11.1.1 |                                         |      |      |            | 11.11       | 1111       | 37 36 39 40 41                   | + OR -<br>BODY<br>NUMBER |
|   | -    | F    | F          | -     | - | -           | F | -    | F    | F    | F          | -     | F          | F      | -                                       | F    | F    | F          | F           | -          | t2 t3                            | OR                       |
|   |      |      |            |       |   |             |   | 1111 | 1111 | 1111 | 1111       | 1111  | 1111       | 1111   | 1111                                    |      | 1111 | 1111       | 1111        | 1          | # 45 #6 47 #8                    | + OR -<br>BODY<br>NUMBER |
|   | F    | F    | F          | -     | - | -           | F | -    | F    | F    | F          | F     | -          | -      | F                                       | F    | F    | F          | F           | -          | \$ 50                            | OR                       |
|   | 1    |      |            |       |   | 1           |   | 111  | 1111 | 1111 |            |       | 1111       | 1111   |                                         |      | 1111 | 1111       | 1111        | 1111       | 51, 52, 53, 54, 55               | + OR -<br>BODY<br>NUMBER |
|   | F    | F    | F          | F     | - | -           | F | F    | F    | -    | -          | -     | -          | -      | -                                       | -    | F    | F          | F           | -          | 56 57                            | OR                       |
|   |      |      | 1111       |       |   | 1111        |   | 1111 | 1111 | 1111 |            | 1111  | 1111       | 1111   | 1111                                    | 1111 | 1111 | 1111       | 1111        | 1111       | 58 59 60 61 62                   | + OR -<br>BODY<br>NUMBER |
|   | -    | -    | -          | -     | - | -           | - | -    | -    | F    | -          | -     | -          | -      | -                                       | -    | F    | E          | -           | -          | 63 64                            | OR                       |
|   |      |      |            |       |   |             |   | 1111 |      | 1111 | 1111       |       | 1111       | 1      |                                         |      | 1111 |            | 1111        |            | 65, 66, 67, 68, 69               | + OR -<br>BODY<br>NUMBER |
|   |      |      | 1111111111 |       |   | 11111111111 |   |      |      |      | 1111111111 |       | 1111111111 |        | 111111111111111111111111111111111111111 |      |      | 1111111111 | 11111111111 | 1111111111 | 70,71,72,73,74,75,76,77,78,79,80 | IDENTIFICATION           |

REGION TABLE

Page

of

\$\text{\psi}\text{\text{U.S.}} GOVERNMENT PRINTING OFFICE: 1971-769-003/12

USED FOR:

| REGION<br>NUMBER           | ITEM CODE                               | AIR SPACE<br>CODE            | BLANK                                  | ALPHAMERIC DESCRIPTION OF REGION                                                                            | IDENT          |
|----------------------------|-----------------------------------------|------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|
| 1, 2, 3, 4, 5, 6, 7, 8, 9, | 10 11 12 13 14 15 16 17 18 19 20        | 21 22 23 24 25 26 27 28 29 3 | 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | 77, 78, 79, 80 |
|                            | 1                                       | 11111111                     |                                        |                                                                                                             | 111            |
| Hann                       | ПППППП                                  |                              |                                        |                                                                                                             | 111            |
|                            | TITLI TITLE                             | 11111111                     |                                        |                                                                                                             | 111            |
| 111111111                  | 11111111                                | 11111111                     |                                        |                                                                                                             | 111            |
| بنيليلين                   | 11111111                                |                              | 11111111                               |                                                                                                             | 111            |
| لتثلبلنا                   | 111111111                               | 1111111                      |                                        |                                                                                                             | 111            |
|                            | 1111111                                 |                              | 11111111                               |                                                                                                             | 111            |
| 11111111                   | - LILILII                               | 111111111                    | 11111111                               |                                                                                                             | 111            |
|                            | 11111111                                | 11111111                     | LLIIIII                                |                                                                                                             | 111            |
|                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1111111                      |                                        |                                                                                                             | 111            |
| шши                        | +11111111                               | 11111111                     | 111111111                              |                                                                                                             | 111            |
| 1111111                    | 11111111                                | 11111111                     | 11111111                               |                                                                                                             | 111            |
| 41111111                   | 111111111                               | 11111111                     | 1111111                                |                                                                                                             | 111            |
|                            | 11111111                                | 11111111                     | 11111111                               |                                                                                                             |                |
| 111111111                  | 11111111                                |                              |                                        |                                                                                                             |                |
| 11111111                   |                                         |                              |                                        |                                                                                                             |                |
|                            |                                         |                              |                                        |                                                                                                             | 1111           |
|                            | 11111111                                |                              |                                        |                                                                                                             |                |
|                            |                                         |                              |                                        |                                                                                                             |                |
|                            |                                         |                              |                                        |                                                                                                             | 111            |